Câu hỏi:

12/02/2023 11,803

Tất cả các giá trị của \(m\) để hàm số \(f(x) = {x^3} - 2m{x^2} + x\) nghịch biến trên khoảng \(\left( {1;2} \right)\)là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải

Chọn A

[phương pháp tự luận]

\[f'\left( x \right) = 3{x^2} - 4mx + 1\].

Hàm số nghịch biến trên \[\left( {1;2} \right)\] khi và chỉ khi \[f'\left( x \right) \le 0,\,\,\forall x \in \left( {1;2} \right)\]

Khi đó \[3{x^2} - 4mx + 1 \le 0 \Leftrightarrow m \ge \frac{{3{x^2} + 1}}{{4x}}\] \[\left( 1 \right)\].

Đặt \[g\left( x \right) = \frac{{3{x^2} + 1}}{{4x}}\]; tập xác định \[D = \left( {1;2} \right)\].

\[g'\left( x \right) = \frac{{12{x^2} - 4}}{{16{x^2}}}\]. \[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 3 }}{3} & & \left( l \right)\\x = \frac{{ - \sqrt 3 }}{3}\,\,\, & \left( l \right)\end{array} \right.\].

\[\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = 1\]; \[\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right) = \frac{{13}}{8}\].

Ta có bảng biến thiên hàm số \[y = g\left( x \right)\]:

Media VietJack 

Từ bảng biến thiên, \[\left( 1 \right)\] luôn đúng khi \[m \ge \frac{{13}}{8}\].

[phương pháp trắc nghiệm]

Thay \[m = 2\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án B,

Thay \[m = \frac{{13}}{8}\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đồ thị của đạo hàm \(y = f'\left( x \right)\)như hình vẽ bên. Hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng nào dưới đây?
Media VietJack

Xem đáp án » 12/02/2023 11,301

Câu 2:

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Media VietJack

Phương trình \(f\left( {f\left( x \right)} \right) = 0\)có nhiều nhất bao nhiêu nghiệm?

Xem đáp án » 12/02/2023 9,243

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - {x^2} + 2x + 3,\,\forall x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị?

Xem đáp án » 12/02/2023 6,696

Câu 4:

Đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) và đường thẳng \(y = 2\) có bao nhiêu điểm chung?

Xem đáp án » 12/02/2023 3,912

Câu 5:

Cho hàm số \[y = \frac{{\left( {m - 1} \right){x^3}}}{3} + \left( {m - 1} \right){x^2} + 4x - 1\]. Hàm số đã cho đạt cực tiểu tại \[{x_1}\], đạt cực đại tại \[{x_2}\] đồng thời \[{x_1} < {x_2}\] khi và chỉ khi:

Xem đáp án » 12/02/2023 3,426

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Media VietJack

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 12/02/2023 3,329
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay