Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Hàm số \(y = {x^4} + 2{x^2} - 1\)đồng biến trên khoảng nào sau đây?

Xem đáp án

Câu 2:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Media VietJack

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án

Câu 3:

Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)và có bảng biến thiên như sau:

Media VietJack

Khẳng định nào sau đây là sai về sự biến thiên của hàm số \(y = f\left( x \right)\)?

Xem đáp án

Câu 4:

Cho hàm số \(f\left( x \right) = {x^4} - 8{x^3} + 1\). Chọn mệnh đề đúng.

Xem đáp án

Câu 6:

Cho hàm số có bảng biến thiên như hình vẽ sau. Phát biểu nào đúng?
Media VietJack

Xem đáp án

Câu 11:

Đồ thị sau đây là của hàm số nào?

Media VietJack

Xem đáp án

Câu 13:

Trong các mệnh đề sau, mệnh đề nào đúng ?

Xem đáp án

Câu 15:

Khối lập phương là khối đa diện đều thuộc loại nào?

Xem đáp án

Câu 17:

Cho hình chóp đều \[S.ABC\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt {21} }}{6}\]. Tính theo \(a\) thể tích \(V\) của khối chóp \[S.ABC\].

Xem đáp án

Câu 29:

Tìm \(a\), \(b\) để hàm số \(y = \frac{{ax + b}}{{x + 1}}\) có đồ thị như hình vẽ bên.
Media VietJack

Xem đáp án

Câu 30:

Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\] có đồ thị như hình vẽ.

Media VietJack

Khẳng định nào sau đây đúng?

Xem đáp án

Câu 33:

Cho hàm số \(y = {x^4} - 2{x^2} - 3\) có đồ thị như hình vẽ bên dưới. Với giá trị nào của tham số \(m\)thì phương trình \({x^4} - 2{x^2} - 3 = 2m - 4\) có hai nghiệm phân biệt?
Media VietJack

Xem đáp án

Câu 35:

Cho khối lăng trụ \(ABC.A'B'C'\) (tham khảo hình sau). Gọi \(M\) là trung điểm của đoạn thẳng \(BB'\). Mặt phẳng \(\left( {AMC'} \right)\) chia khối lăng trụ đã cho thành các khối đa diện nào ?
Media VietJack

Xem đáp án

Câu 43:

Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng \(1\) mét. Khi đó hình thang đã cho có diện tích lớn nhất bằng?

Xem đáp án

Câu 47:

Cho hình chóp \(S.ABCD\)đáy là hình bình hành. Gọi \(M,N\)lần lượt là trung điểm của \(SA,SC\). Mặt phẳng \((BMN)\)cắt \(SD\)tại \(P\). Tỉ số \(\frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}}\)bằng:

Xem đáp án

5.0

1 Đánh giá

100%

0%

0%

0%

0%