Câu hỏi:

12/02/2023 147 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng ?

A. Tồn tại một hình đa diện có số cạnh bằng số đỉnh.
B. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau.
C. Số đỉnh và số mặt của hình đa diện luôn bằng nhau.
D. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn D

Hình tứ diện có \(4\)đỉnh và \(4\)mặt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(m \ge \frac{{13}}{8}.\)
B. \(1 \le m \le \frac{{13}}{8}.\)
C. \(m \le 0.\)
D. \(m > \frac{{13}}{8}.\)

Lời giải

Lời giải

Chọn A

[phương pháp tự luận]

\[f'\left( x \right) = 3{x^2} - 4mx + 1\].

Hàm số nghịch biến trên \[\left( {1;2} \right)\] khi và chỉ khi \[f'\left( x \right) \le 0,\,\,\forall x \in \left( {1;2} \right)\]

Khi đó \[3{x^2} - 4mx + 1 \le 0 \Leftrightarrow m \ge \frac{{3{x^2} + 1}}{{4x}}\] \[\left( 1 \right)\].

Đặt \[g\left( x \right) = \frac{{3{x^2} + 1}}{{4x}}\]; tập xác định \[D = \left( {1;2} \right)\].

\[g'\left( x \right) = \frac{{12{x^2} - 4}}{{16{x^2}}}\]. \[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 3 }}{3} & & \left( l \right)\\x = \frac{{ - \sqrt 3 }}{3}\,\,\, & \left( l \right)\end{array} \right.\].

\[\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = 1\]; \[\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right) = \frac{{13}}{8}\].

Ta có bảng biến thiên hàm số \[y = g\left( x \right)\]:

Media VietJack 

Từ bảng biến thiên, \[\left( 1 \right)\] luôn đúng khi \[m \ge \frac{{13}}{8}\].

[phương pháp trắc nghiệm]

Thay \[m = 2\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án B,

Thay \[m = \frac{{13}}{8}\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án

Lời giải

Lời giải

Chọn D

Ta có: \(g'\left( x \right) = 2xf'\left( {{x^2} - 2} \right) - 6f'\left( {2 - 2x} \right) = k\left( x \right) + q\left( x \right)\)

Đặt

\[k\left( x \right) = 2xf'\left( {{x^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\\{x^2} - 2 = - 3\\{x^2} - 2 = 0\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \\x = \pm 2\end{array} \right.\]

Đặt

\(q\left( x \right) = - 6f'\left( {2 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 - 2x = - 3\\2 - 2x = 0\\2 - 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{5}{2}\\x = 1\\x = 0\end{array} \right.\)

Ta có bảng xét dấu

Media VietJack

Suy ra hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng \(\left( { - 1;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;4} \right).\)
B. \(\left( {0;2} \right).\)
C. \(\left( { - \infty ;0} \right)\)\(\left( {2; + \infty } \right).\)
D. \(\left( { - \infty ;1} \right)\)\(\left( {4; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP