Câu hỏi:

12/02/2023 204

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \[A\]\(D\); \[AB = AD = 2a\], \[BC = a\sqrt 5 \], \[CD = a\], góc giữa hai mặt phẳng \[\left( {SBC} \right)\]\[\left( {ABCD} \right)\] bằng \[60^\circ \]. Gọi \[I\] là trung điểm cạnh \[AD\]. Biết hai mặt phẳng \(\left( {SBI} \right)\)\[\left( {SCI} \right)\] cùng vuông góc với mặt phẳng \[\left( {ABCD} \right)\]. Tính thể tích khối chóp \[S.ABCD\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

Media VietJack

Do \[\left( {SBI} \right) \bot \left( {ABCD} \right)\]\[\left( {SCI} \right) \bot \left( {ABCD} \right)\] nên \[SI \bot \left( {ABCD} \right)\].

Ta có \[IB = \sqrt {A{B^2} + A{I^2}} = a\sqrt 5 \], \[CI = \sqrt {C{D^2} + D{I^2}} = a\sqrt 2 \], suy ra tam giác \[BCI\] cân tại \[B\].

Gọi \[K\] là trung điểm của \[CI\], \[BK = \sqrt {B{C^2} - C{K^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{3a\sqrt 2 }}{2}\], \[{S_{\Delta BCI}} = \frac{1}{2}BK.CI = \frac{{3{a^2}}}{2}\].

Kẻ \[IH \bot BC \Rightarrow BC \bot SH\] nên góc giữa hai mặt phẳng \[\left( {SBC} \right)\]\[\left( {ABCD} \right)\] là góc \[\widehat {SHI}\].

\[{S_{\Delta BCI}} = \frac{1}{2}IH.BC \Rightarrow IH = \frac{{2{S_{\Delta BCI}}}}{{BC}} = \frac{{3a}}{{\sqrt 5 }}\], \[SI = IH.\tan 60^\circ = \frac{{3a}}{{\sqrt 5 }}.\sqrt 3 = \frac{{3a\sqrt {15} }}{5}\].

Vậy \[{V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} = \frac{1}{3}\frac{{3a\sqrt {15} }}{5}\frac{{a + 2a}}{2}.2a = \frac{{3{a^3}\sqrt {15} }}{5}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn A

[phương pháp tự luận]

\[f'\left( x \right) = 3{x^2} - 4mx + 1\].

Hàm số nghịch biến trên \[\left( {1;2} \right)\] khi và chỉ khi \[f'\left( x \right) \le 0,\,\,\forall x \in \left( {1;2} \right)\]

Khi đó \[3{x^2} - 4mx + 1 \le 0 \Leftrightarrow m \ge \frac{{3{x^2} + 1}}{{4x}}\] \[\left( 1 \right)\].

Đặt \[g\left( x \right) = \frac{{3{x^2} + 1}}{{4x}}\]; tập xác định \[D = \left( {1;2} \right)\].

\[g'\left( x \right) = \frac{{12{x^2} - 4}}{{16{x^2}}}\]. \[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 3 }}{3} & & \left( l \right)\\x = \frac{{ - \sqrt 3 }}{3}\,\,\, & \left( l \right)\end{array} \right.\].

\[\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = 1\]; \[\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right) = \frac{{13}}{8}\].

Ta có bảng biến thiên hàm số \[y = g\left( x \right)\]:

Media VietJack 

Từ bảng biến thiên, \[\left( 1 \right)\] luôn đúng khi \[m \ge \frac{{13}}{8}\].

[phương pháp trắc nghiệm]

Thay \[m = 2\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án B,

Thay \[m = \frac{{13}}{8}\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án

Lời giải

Lời giải

Chọn D

Ta có: \(g'\left( x \right) = 2xf'\left( {{x^2} - 2} \right) - 6f'\left( {2 - 2x} \right) = k\left( x \right) + q\left( x \right)\)

Đặt

\[k\left( x \right) = 2xf'\left( {{x^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\\{x^2} - 2 = - 3\\{x^2} - 2 = 0\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \\x = \pm 2\end{array} \right.\]

Đặt

\(q\left( x \right) = - 6f'\left( {2 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 - 2x = - 3\\2 - 2x = 0\\2 - 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{5}{2}\\x = 1\\x = 0\end{array} \right.\)

Ta có bảng xét dấu

Media VietJack

Suy ra hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng \(\left( { - 1;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP