Câu hỏi:

12/02/2023 348 Lưu

Cho hàm số có bảng biến thiên như hình vẽ sau. Phát biểu nào đúng?
Media VietJack

A. Giá trị cực tiểu của hàm số bằng \(2\).
B. Hàm số đạt cực tiểu tại \(x = 1\) và đạt cực đại tại \(x = 5\).
C. Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 2\).
D. Giá trị cực đại của hàm số là \(0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn C

Dựa vào bảng biến thiên, ta thấy hàm số có giá trị cực đại bằng \(5\) tại \(x = 0\) và có giá trị cực tiểu bằng \(1\) tại \(x = 2.\) Từ các đáp án A, B, C, D ta chọn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(m \ge \frac{{13}}{8}.\)
B. \(1 \le m \le \frac{{13}}{8}.\)
C. \(m \le 0.\)
D. \(m > \frac{{13}}{8}.\)

Lời giải

Lời giải

Chọn A

[phương pháp tự luận]

\[f'\left( x \right) = 3{x^2} - 4mx + 1\].

Hàm số nghịch biến trên \[\left( {1;2} \right)\] khi và chỉ khi \[f'\left( x \right) \le 0,\,\,\forall x \in \left( {1;2} \right)\]

Khi đó \[3{x^2} - 4mx + 1 \le 0 \Leftrightarrow m \ge \frac{{3{x^2} + 1}}{{4x}}\] \[\left( 1 \right)\].

Đặt \[g\left( x \right) = \frac{{3{x^2} + 1}}{{4x}}\]; tập xác định \[D = \left( {1;2} \right)\].

\[g'\left( x \right) = \frac{{12{x^2} - 4}}{{16{x^2}}}\]. \[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 3 }}{3} & & \left( l \right)\\x = \frac{{ - \sqrt 3 }}{3}\,\,\, & \left( l \right)\end{array} \right.\].

\[\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = 1\]; \[\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right) = \frac{{13}}{8}\].

Ta có bảng biến thiên hàm số \[y = g\left( x \right)\]:

Media VietJack 

Từ bảng biến thiên, \[\left( 1 \right)\] luôn đúng khi \[m \ge \frac{{13}}{8}\].

[phương pháp trắc nghiệm]

Thay \[m = 2\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án B,

Thay \[m = \frac{{13}}{8}\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án

Lời giải

Lời giải

Chọn D

Ta có: \(g'\left( x \right) = 2xf'\left( {{x^2} - 2} \right) - 6f'\left( {2 - 2x} \right) = k\left( x \right) + q\left( x \right)\)

Đặt

\[k\left( x \right) = 2xf'\left( {{x^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\\{x^2} - 2 = - 3\\{x^2} - 2 = 0\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \\x = \pm 2\end{array} \right.\]

Đặt

\(q\left( x \right) = - 6f'\left( {2 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 - 2x = - 3\\2 - 2x = 0\\2 - 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{5}{2}\\x = 1\\x = 0\end{array} \right.\)

Ta có bảng xét dấu

Media VietJack

Suy ra hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng \(\left( { - 1;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;4} \right).\)
B. \(\left( {0;2} \right).\)
C. \(\left( { - \infty ;0} \right)\)\(\left( {2; + \infty } \right).\)
D. \(\left( { - \infty ;1} \right)\)\(\left( {4; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP