Câu hỏi:

12/02/2023 1,381

Tìm tất cả giá trị thực của tham số \(m\) để đường thẳng \(\left( d \right):y = mx - m - 1\) cắt đồ thị \(\left( C \right):y = {x^3} - 3{x^2} + 1\) tại 3 điểm \(A\), \(B\), \(C\) phân biệt (\(B\) thuộc đoạn \(AC\)), sao cho tam giác \(AOC\) cân tại \(O\) (với \(O\) là gốc toạ độ).

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Cách 1:

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và đường cong \(\left( C \right)\): \({x^3} - 3{x^2} + 1 = mx - m - 1\) \( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2 - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x - 2 - m = 0\left( * \right)}\end{array}} \right.\).

\(\left( d \right)\) cắt \(\left( C \right)\) tại \(3\) điểm phân biệt \(A\), \(B\), \(C\) \( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(1\).

\(\left( * \right) \Leftrightarrow {\left( {x - 1} \right)^2} = m + 3\) có hai nghiệm phân biệt khác \(1\) khi và chỉ khi \(m > - 3\).

Khi đó \(\left( * \right)\) có hai nghiệm \({x_1} = 1 - \sqrt {m + 3} \), \({x_2} = 1 + \sqrt {m + 3} \) thỏa \({x_1} < 1 < {x_2}\).

Không mất tính tổng quát, gọi \(A\left( {1 - \sqrt {m + 3} ; - m\sqrt {m + 3} - 1} \right)\), \(B\left( {1; - 1} \right)\), \(C\left( {1 + \sqrt {m + 3} ;m\sqrt {m + 3} - 1} \right)\).

Tam giác \(AOC\) cân tại \(O\) \( \Leftrightarrow OA = OC \Leftrightarrow O{A^2} = O{C^2}\)

      \( \Leftrightarrow {\left( {1 - \sqrt {m + 3} } \right)^2} + {\left( { - m\sqrt {m + 3} - 1} \right)^2} = {\left( {1 + \sqrt {m + 3} } \right)^2} + {\left( {m\sqrt {m + 3} - 1} \right)^2}\)

\( \Leftrightarrow 4\sqrt {m + 3} - 4m\sqrt {m + 3} = 0 \Leftrightarrow 4\left( {m - 1} \right)\sqrt {m + 3} = 0 \Leftrightarrow m = 1\).

Với \(m = 1\) thỏa mãn điều kiện tồn tại các điểm \(A\), \(B\), \(C\) và khi đó đường thẳng \(\left( d \right):y = x - 2\) không đi qua gốc tọa độ \(O\) nên \(A\), \(O\), \(C\) tạo thành tam giác cân. Vậy \(m = 1\) là giá trị cần tìm.

Cách 2:

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và đường cong \(\left( C \right)\): \({x^3} - 3{x^2} + 1 = mx - m - 1\) \( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2 - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x - 2 - m = 0\left( * \right)}\end{array}} \right.\).

\(\left( d \right)\) cắt \(\left( C \right)\) tại \(3\) điểm phân biệt \(A\), \(B\), \(C\) \( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(1\).

\(\left( * \right) \Leftrightarrow {\left( {x - 1} \right)^2} = m + 3\) có hai nghiệm phân biệt \({x_1}\),\({x_2}\) khác \(1\) khi và chỉ khi \(m > - 3\).

Xét \({x^2} - 2x - 2 - m = 0\,\)\(\left( * \right)\)

Theo Viet:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}{x_2} = - m - 2}\end{array}} \right.\)

Khi đó:\(A\left( {{x_1};m{x_1} - m - 1} \right)\),\(B\left( {{x_2};m{x_2} - m - 1} \right)\).

Cần có:\(O{A^2} = O{B^2}\)

          \( \Leftrightarrow x_1^2 + {\left( {m{x_1} - m - 1} \right)^2} = x_2^2 + {\left( {m{x_2} - m - 1} \right)^2}\)

   \( \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left[ {\left( {{x_1} + {x_2}} \right) + m\left[ {m\left( {{x_1} + {x_2}} \right) - 2m - 2} \right]} \right] = 0\)

          \( \Leftrightarrow \left[ {\left( {{x_1} + {x_2}} \right) + m\left[ {m\left( {{x_1} + {x_2}} \right) - 2m - 2} \right]} \right] = 0\)

\( \Leftrightarrow 2 + m\left( {2m - 2m - 2} \right) = 0 \Leftrightarrow m = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đồ thị của đạo hàm \(y = f'\left( x \right)\)như hình vẽ bên. Hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng nào dưới đây?
Media VietJack

Xem đáp án » 12/02/2023 11,034

Câu 2:

Tất cả các giá trị của \(m\) để hàm số \(f(x) = {x^3} - 2m{x^2} + x\) nghịch biến trên khoảng \(\left( {1;2} \right)\)là:

Xem đáp án » 12/02/2023 10,849

Câu 3:

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Media VietJack

Phương trình \(f\left( {f\left( x \right)} \right) = 0\)có nhiều nhất bao nhiêu nghiệm?

Xem đáp án » 12/02/2023 7,866

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - {x^2} + 2x + 3,\,\forall x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị?

Xem đáp án » 12/02/2023 6,539

Câu 5:

Đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) và đường thẳng \(y = 2\) có bao nhiêu điểm chung?

Xem đáp án » 12/02/2023 3,762

Câu 6:

Cho hàm số \[y = \frac{{\left( {m - 1} \right){x^3}}}{3} + \left( {m - 1} \right){x^2} + 4x - 1\]. Hàm số đã cho đạt cực tiểu tại \[{x_1}\], đạt cực đại tại \[{x_2}\] đồng thời \[{x_1} < {x_2}\] khi và chỉ khi:

Xem đáp án » 12/02/2023 3,263

Câu 7:

Tìm tất cả các giá trị của tham số \[m\]để hàm số \(y = \frac{{mx - 2}}{{m - 2x}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\).

Xem đáp án » 12/02/2023 2,624

Bình luận


Bình luận