Câu hỏi:
12/02/2023 1,231Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn B
Cách 1:
Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và đường cong \(\left( C \right)\): \({x^3} - 3{x^2} + 1 = mx - m - 1\) \( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2 - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x - 2 - m = 0\left( * \right)}\end{array}} \right.\).
\(\left( d \right)\) cắt \(\left( C \right)\) tại \(3\) điểm phân biệt \(A\), \(B\), \(C\) \( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(1\).
\(\left( * \right) \Leftrightarrow {\left( {x - 1} \right)^2} = m + 3\) có hai nghiệm phân biệt khác \(1\) khi và chỉ khi \(m > - 3\).
Khi đó \(\left( * \right)\) có hai nghiệm \({x_1} = 1 - \sqrt {m + 3} \), \({x_2} = 1 + \sqrt {m + 3} \) thỏa \({x_1} < 1 < {x_2}\).
Không mất tính tổng quát, gọi \(A\left( {1 - \sqrt {m + 3} ; - m\sqrt {m + 3} - 1} \right)\), \(B\left( {1; - 1} \right)\), \(C\left( {1 + \sqrt {m + 3} ;m\sqrt {m + 3} - 1} \right)\).
Tam giác \(AOC\) cân tại \(O\) \( \Leftrightarrow OA = OC \Leftrightarrow O{A^2} = O{C^2}\)
\( \Leftrightarrow {\left( {1 - \sqrt {m + 3} } \right)^2} + {\left( { - m\sqrt {m + 3} - 1} \right)^2} = {\left( {1 + \sqrt {m + 3} } \right)^2} + {\left( {m\sqrt {m + 3} - 1} \right)^2}\)
\( \Leftrightarrow 4\sqrt {m + 3} - 4m\sqrt {m + 3} = 0 \Leftrightarrow 4\left( {m - 1} \right)\sqrt {m + 3} = 0 \Leftrightarrow m = 1\).
Với \(m = 1\) thỏa mãn điều kiện tồn tại các điểm \(A\), \(B\), \(C\) và khi đó đường thẳng \(\left( d \right):y = x - 2\) không đi qua gốc tọa độ \(O\) nên \(A\), \(O\), \(C\) tạo thành tam giác cân. Vậy \(m = 1\) là giá trị cần tìm.
Cách 2:
Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và đường cong \(\left( C \right)\): \({x^3} - 3{x^2} + 1 = mx - m - 1\) \( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2 - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x - 2 - m = 0\left( * \right)}\end{array}} \right.\).
\(\left( d \right)\) cắt \(\left( C \right)\) tại \(3\) điểm phân biệt \(A\), \(B\), \(C\) \( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(1\).
\(\left( * \right) \Leftrightarrow {\left( {x - 1} \right)^2} = m + 3\) có hai nghiệm phân biệt \({x_1}\),\({x_2}\) khác \(1\) khi và chỉ khi \(m > - 3\).
Xét \({x^2} - 2x - 2 - m = 0\,\)\(\left( * \right)\)
Theo Viet:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}{x_2} = - m - 2}\end{array}} \right.\)
Khi đó:\(A\left( {{x_1};m{x_1} - m - 1} \right)\),\(B\left( {{x_2};m{x_2} - m - 1} \right)\).
Cần có:\(O{A^2} = O{B^2}\)
\( \Leftrightarrow x_1^2 + {\left( {m{x_1} - m - 1} \right)^2} = x_2^2 + {\left( {m{x_2} - m - 1} \right)^2}\)
\( \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left[ {\left( {{x_1} + {x_2}} \right) + m\left[ {m\left( {{x_1} + {x_2}} \right) - 2m - 2} \right]} \right] = 0\)
\( \Leftrightarrow \left[ {\left( {{x_1} + {x_2}} \right) + m\left[ {m\left( {{x_1} + {x_2}} \right) - 2m - 2} \right]} \right] = 0\)
\( \Leftrightarrow 2 + m\left( {2m - 2m - 2} \right) = 0 \Leftrightarrow m = 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau
Phương trình \(f\left( {f\left( x \right)} \right) = 0\)có nhiều nhất bao nhiêu nghiệm?
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!