Câu hỏi:

12/02/2023 1,803

Tìm tất cả giá trị thực của tham số \(m\) để đường thẳng \(\left( d \right):y = mx - m - 1\) cắt đồ thị \(\left( C \right):y = {x^3} - 3{x^2} + 1\) tại 3 điểm \(A\), \(B\), \(C\) phân biệt (\(B\) thuộc đoạn \(AC\)), sao cho tam giác \(AOC\) cân tại \(O\) (với \(O\) là gốc toạ độ).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B

Cách 1:

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và đường cong \(\left( C \right)\): \({x^3} - 3{x^2} + 1 = mx - m - 1\) \( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2 - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x - 2 - m = 0\left( * \right)}\end{array}} \right.\).

\(\left( d \right)\) cắt \(\left( C \right)\) tại \(3\) điểm phân biệt \(A\), \(B\), \(C\) \( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(1\).

\(\left( * \right) \Leftrightarrow {\left( {x - 1} \right)^2} = m + 3\) có hai nghiệm phân biệt khác \(1\) khi và chỉ khi \(m > - 3\).

Khi đó \(\left( * \right)\) có hai nghiệm \({x_1} = 1 - \sqrt {m + 3} \), \({x_2} = 1 + \sqrt {m + 3} \) thỏa \({x_1} < 1 < {x_2}\).

Không mất tính tổng quát, gọi \(A\left( {1 - \sqrt {m + 3} ; - m\sqrt {m + 3} - 1} \right)\), \(B\left( {1; - 1} \right)\), \(C\left( {1 + \sqrt {m + 3} ;m\sqrt {m + 3} - 1} \right)\).

Tam giác \(AOC\) cân tại \(O\) \( \Leftrightarrow OA = OC \Leftrightarrow O{A^2} = O{C^2}\)

      \( \Leftrightarrow {\left( {1 - \sqrt {m + 3} } \right)^2} + {\left( { - m\sqrt {m + 3} - 1} \right)^2} = {\left( {1 + \sqrt {m + 3} } \right)^2} + {\left( {m\sqrt {m + 3} - 1} \right)^2}\)

\( \Leftrightarrow 4\sqrt {m + 3} - 4m\sqrt {m + 3} = 0 \Leftrightarrow 4\left( {m - 1} \right)\sqrt {m + 3} = 0 \Leftrightarrow m = 1\).

Với \(m = 1\) thỏa mãn điều kiện tồn tại các điểm \(A\), \(B\), \(C\) và khi đó đường thẳng \(\left( d \right):y = x - 2\) không đi qua gốc tọa độ \(O\) nên \(A\), \(O\), \(C\) tạo thành tam giác cân. Vậy \(m = 1\) là giá trị cần tìm.

Cách 2:

Xét phương trình hoành độ giao điểm của đường thẳng \(\left( d \right)\) và đường cong \(\left( C \right)\): \({x^3} - 3{x^2} + 1 = mx - m - 1\) \( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2 - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} - 2x - 2 - m = 0\left( * \right)}\end{array}} \right.\).

\(\left( d \right)\) cắt \(\left( C \right)\) tại \(3\) điểm phân biệt \(A\), \(B\), \(C\) \( \Leftrightarrow \) \(\left( * \right)\) có hai nghiệm phân biệt khác \(1\).

\(\left( * \right) \Leftrightarrow {\left( {x - 1} \right)^2} = m + 3\) có hai nghiệm phân biệt \({x_1}\),\({x_2}\) khác \(1\) khi và chỉ khi \(m > - 3\).

Xét \({x^2} - 2x - 2 - m = 0\,\)\(\left( * \right)\)

Theo Viet:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}{x_2} = - m - 2}\end{array}} \right.\)

Khi đó:\(A\left( {{x_1};m{x_1} - m - 1} \right)\),\(B\left( {{x_2};m{x_2} - m - 1} \right)\).

Cần có:\(O{A^2} = O{B^2}\)

          \( \Leftrightarrow x_1^2 + {\left( {m{x_1} - m - 1} \right)^2} = x_2^2 + {\left( {m{x_2} - m - 1} \right)^2}\)

   \( \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left[ {\left( {{x_1} + {x_2}} \right) + m\left[ {m\left( {{x_1} + {x_2}} \right) - 2m - 2} \right]} \right] = 0\)

          \( \Leftrightarrow \left[ {\left( {{x_1} + {x_2}} \right) + m\left[ {m\left( {{x_1} + {x_2}} \right) - 2m - 2} \right]} \right] = 0\)

\( \Leftrightarrow 2 + m\left( {2m - 2m - 2} \right) = 0 \Leftrightarrow m = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn A

[phương pháp tự luận]

\[f'\left( x \right) = 3{x^2} - 4mx + 1\].

Hàm số nghịch biến trên \[\left( {1;2} \right)\] khi và chỉ khi \[f'\left( x \right) \le 0,\,\,\forall x \in \left( {1;2} \right)\]

Khi đó \[3{x^2} - 4mx + 1 \le 0 \Leftrightarrow m \ge \frac{{3{x^2} + 1}}{{4x}}\] \[\left( 1 \right)\].

Đặt \[g\left( x \right) = \frac{{3{x^2} + 1}}{{4x}}\]; tập xác định \[D = \left( {1;2} \right)\].

\[g'\left( x \right) = \frac{{12{x^2} - 4}}{{16{x^2}}}\]. \[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 3 }}{3} & & \left( l \right)\\x = \frac{{ - \sqrt 3 }}{3}\,\,\, & \left( l \right)\end{array} \right.\].

\[\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = 1\]; \[\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right) = \frac{{13}}{8}\].

Ta có bảng biến thiên hàm số \[y = g\left( x \right)\]:

Media VietJack 

Từ bảng biến thiên, \[\left( 1 \right)\] luôn đúng khi \[m \ge \frac{{13}}{8}\].

[phương pháp trắc nghiệm]

Thay \[m = 2\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án B,

Thay \[m = \frac{{13}}{8}\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án

Lời giải

Lời giải

Chọn D

Ta có: \(g'\left( x \right) = 2xf'\left( {{x^2} - 2} \right) - 6f'\left( {2 - 2x} \right) = k\left( x \right) + q\left( x \right)\)

Đặt

\[k\left( x \right) = 2xf'\left( {{x^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\\{x^2} - 2 = - 3\\{x^2} - 2 = 0\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \\x = \pm 2\end{array} \right.\]

Đặt

\(q\left( x \right) = - 6f'\left( {2 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 - 2x = - 3\\2 - 2x = 0\\2 - 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{5}{2}\\x = 1\\x = 0\end{array} \right.\)

Ta có bảng xét dấu

Media VietJack

Suy ra hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng \(\left( { - 1;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP