Cho hàm số \(f\left( x \right) = {x^4} - 2{x^3} + m\) (\(m\) là tham số thực). Tìm tổng tất cả các giá trị của \(m\) sao cho \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10\).
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn C
Ta xét \(f\left( x \right) = {x^4} - 2{x^3} + m\) liên tục trên đoạn \(\left[ {0;1} \right]\), \(f'\left( x \right) = 4{x^3} - 6{x^2}\).
\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \in \left[ {0;1} \right]}\\{x = \frac{3}{2} \notin \left[ {0;1} \right]}\end{array}} \right.\).
\(f\left( 0 \right) = m;f\left( 1 \right) = m - 1\).
Ta xét các trường hợp sau:
-Nếu \(m \le 0\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = - m\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow \left( {1 - m} \right) + 2\left( { - m} \right) = 10 \Leftrightarrow m = - 3\) (thỏa điều kiện).
-Nếu \(m \ge 1\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m - 1\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow m + 2\left( {m - 1} \right) = 10 \Leftrightarrow m = 4\) (thỏa điều kiện).
-Nếu \(\frac{1}{2} \le m < 1\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow m = 10\) (không thỏa điều kiện).
-Nếu \(0 < m < \frac{1}{2}\) thì \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m;\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0\).
Khi đó: \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10 \Leftrightarrow 1 - m = 10 \Leftrightarrow m = - 9\) (không thỏa điều kiện).
Do đó có hai giá trị \(m = - 3\) và \(m = 4\) thỏa mãn yêu cầu bài toán.
Vậy tổng tất cả các giá trị của \(m\) sao cho \(\mathop {max}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + 2\mathop {min}\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 10\) là \(1\).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
[phương pháp tự luận]
\[f'\left( x \right) = 3{x^2} - 4mx + 1\].
Hàm số nghịch biến trên \[\left( {1;2} \right)\] khi và chỉ khi \[f'\left( x \right) \le 0,\,\,\forall x \in \left( {1;2} \right)\]
Khi đó \[3{x^2} - 4mx + 1 \le 0 \Leftrightarrow m \ge \frac{{3{x^2} + 1}}{{4x}}\] \[\left( 1 \right)\].
Đặt \[g\left( x \right) = \frac{{3{x^2} + 1}}{{4x}}\]; tập xác định \[D = \left( {1;2} \right)\].
\[g'\left( x \right) = \frac{{12{x^2} - 4}}{{16{x^2}}}\]. \[g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 3 }}{3} & & \left( l \right)\\x = \frac{{ - \sqrt 3 }}{3}\,\,\, & \left( l \right)\end{array} \right.\].
\[\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = 1\]; \[\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right) = \frac{{13}}{8}\].
Ta có bảng biến thiên hàm số \[y = g\left( x \right)\]:
Từ bảng biến thiên, \[\left( 1 \right)\] luôn đúng khi \[m \ge \frac{{13}}{8}\].
[phương pháp trắc nghiệm]
Thay \[m = 2\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án B,
Thay \[m = \frac{{13}}{8}\], lập bảng biến thiên hàm số, ta thấy thỏa mãn yêu cầu bài toán, loại đáp án
Lời giải
Lời giải
Chọn D
Ta có: \(g'\left( x \right) = 2xf'\left( {{x^2} - 2} \right) - 6f'\left( {2 - 2x} \right) = k\left( x \right) + q\left( x \right)\)
Đặt
\[k\left( x \right) = 2xf'\left( {{x^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\\{x^2} - 2 = - 3\\{x^2} - 2 = 0\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \\x = \pm 2\end{array} \right.\]
Đặt
\(q\left( x \right) = - 6f'\left( {2 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 - 2x = - 3\\2 - 2x = 0\\2 - 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{5}{2}\\x = 1\\x = 0\end{array} \right.\)
Ta có bảng xét dấu
Suy ra hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng \(\left( { - 1;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.