Câu hỏi:

12/02/2023 110

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên sau:

Media VietJack

Số nghiệm của phương trình \(f\left( x \right) - 2 = 0\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn A

\(f\left( x \right) - 2 = 0\;\left( * \right) \Leftrightarrow f\left( x \right) = 2\).

Số nghiệm của phương trình (*) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\)và đường thẳng \(y = 2\).

Do \(2 \in \left( { - 2;4} \right)\)nên phương trình đã cho có 3 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đồ thị của đạo hàm \(y = f'\left( x \right)\)như hình vẽ bên. Hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right) + 3f\left( {2 - 2x} \right) + 1\) nghịch biến trên khoảng nào dưới đây?
Media VietJack

Xem đáp án » 12/02/2023 11,034

Câu 2:

Tất cả các giá trị của \(m\) để hàm số \(f(x) = {x^3} - 2m{x^2} + x\) nghịch biến trên khoảng \(\left( {1;2} \right)\)là:

Xem đáp án » 12/02/2023 10,847

Câu 3:

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau

Media VietJack

Phương trình \(f\left( {f\left( x \right)} \right) = 0\)có nhiều nhất bao nhiêu nghiệm?

Xem đáp án » 12/02/2023 7,865

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - {x^2} + 2x + 3,\,\forall x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị?

Xem đáp án » 12/02/2023 6,539

Câu 5:

Đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) và đường thẳng \(y = 2\) có bao nhiêu điểm chung?

Xem đáp án » 12/02/2023 3,762

Câu 6:

Cho hàm số \[y = \frac{{\left( {m - 1} \right){x^3}}}{3} + \left( {m - 1} \right){x^2} + 4x - 1\]. Hàm số đã cho đạt cực tiểu tại \[{x_1}\], đạt cực đại tại \[{x_2}\] đồng thời \[{x_1} < {x_2}\] khi và chỉ khi:

Xem đáp án » 12/02/2023 3,262

Câu 7:

Tìm tất cả các giá trị của tham số \[m\]để hàm số \(y = \frac{{mx - 2}}{{m - 2x}}\) nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\).

Xem đáp án » 12/02/2023 2,624

Bình luận


Bình luận