Câu hỏi:

16/02/2023 11,630 Lưu

Cho hàm số \(y = \frac{{ax + 2}}{{cx + b}}\)có đồ thị như hình vẽ. Hãy tính tổng \(S = a + b + c\).
Media VietJack

A. \(S = 2\).
B.  \(S = 1\).
C.  \(S = 3\).
D.  \(S = 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải
Chọn B
Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\)\( \Leftrightarrow - \frac{b}{c} = 1 \Leftrightarrow b + c = 0\)\(\left( 1 \right)\)
Đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = 1\)\( \Leftrightarrow \frac{a}{c} = 1 \Leftrightarrow a - c = 0\)\(\left( 2 \right)\)
Đồ thị hàm số cắt trục hoành tại điểm \(\left( { - 2;0} \right)\)\( \Leftrightarrow \frac{{ - 2a + 2}}{{ - 2c + b}} = 0 \Leftrightarrow a = 1\)\(\left( 3 \right)\)
Từ \(\left( 1 \right)\), \(\left( 2 \right)\)\(\left( 3 \right)\)\( \Rightarrow a = 1\), \(b = - 1\), \(c = 1\).
Vậy \(S = a + b + c = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Không có tiệm cận đứng và tiệm cận ngang.
B. 2 tiệm cận đứng, 1 tiệm cận ngang.
C. 2 tiệm cận ngang, 1 tiệm cận đứng.
D. 1 tiệm cận đứng, 1 tiệm cận ngang.

Lời giải

Lời giải
Chọn B
\[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
\[\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{2f\left( x \right) - 3}} = 0\]
\[ \Rightarrow \] Đồ thị hàm số \[y = g\left( x \right)\] có tiệm cận ngang là đường thẳng \[y = 0\].
Số tiệm cận đứng của đồ thị hàm số \[y = g\left( x \right)\] chính là số nghiệm của phương trình \[2f\left( x \right) = 3\].
Số nghiệm của phương trình \[2f\left( x \right) = 3\] chính là số giao điểm của đồ thị hàm số \[y = g\left( x \right)\] và đường thẳng \[y = \frac{3}{2}\].
Từ bảng biến thiên, ta thấy đường thẳng \[y = \frac{3}{2}\] cắt đồ thị hàm số \[y = g\left( x \right)\] tại đúng \[2\] điểm phân biệt, một điểm có hoành độ thuộc \[\left( {1;2} \right)\], điểm còn lại có hoành độ thuộc \[\left( {2; + \infty } \right)\].
Vậy đồ thị hàm số \[y = g\left( x \right)\]\[1\] tiệm cận ngang và \[2\] tiệm cận đứng.

Lời giải

Lời giải
Chọn D
Ta có: \(y' = 1 - \frac{4}{{{{\left( {x - 1} \right)}^2}}}\). Cho \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\).
\(y\left( 3 \right) = 4\); \(\mathop {\lim }\limits_{n \to {1^ + }} y = + \infty \)\(\mathop {\lim }\limits_{n \to + \infty } y = + \infty \) nên hàm số có giá trị nhỏ nhất bằng \(4\) khi \(x = 3\).

Câu 3

A.  \(y = \frac{{2x - 1}}{{x + 2}}\).
B.  \(y = {x^3} + 4x + 1\).
C.  \(y = {x^2} + 1\).
D.  \(y = {x^4} + 2{x^2} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = {x^3} - 3x + 2\).
B.  \(y = {x^4} - {x^2} + 1\).
C.  \(y = {x^4} + {x^2} + 1\).
D.  \(y = - {x^3} + 3x + 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y\left( { - 2} \right) = 2\).
B. \(y\left( { - 2} \right) = 22\).
C. \(y\left( { - 2} \right) = 6\).
D. \(y\left( { - 2} \right) = - 18\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = \frac{{x + 2}}{{{x^2} + 1}}\).
B. \(y = \frac{{x + 2}}{{x + 1}}\).
C. \(y = \frac{{{x^2} - 1}}{{x + 2}}\).
D. \(y = \frac{1}{{x + 2}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP