Câu hỏi:
21/02/2023 1,711
Cho hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 cắt các trục Ox, Oy tại các điểm \(A\left( {a;0} \right);\,\,B\left( {0;b} \right)\). Khi đó giá trị của \(P = 5a + b\) là:
Cho hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 cắt các trục Ox, Oy tại các điểm \(A\left( {a;0} \right);\,\,B\left( {0;b} \right)\). Khi đó giá trị của \(P = 5a + b\) là:
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+) Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là: \(y = y'\left( 2 \right)\left( {x - 2} \right) + y\left( 2 \right)\)
+) Xác định tọa độ các điểm A, B \( \Rightarrow \) a, b và tính giá trị của P.
Cách giải:
TXĐ: \(D = R\backslash \left\{ 1 \right\}\). Ta có \(y' = \frac{{ - 5}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y'\left( 2 \right) = - 5\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là: \(y = - 5\left( {x - 2} \right) + 7 = - 5x + 17\left( d \right)\)
\(A = d \cap Ox \Rightarrow A\left( {\frac{{17}}{5};0} \right);\,\,\,B = \left( d \right) \cap Oy \Rightarrow \left\{ \begin{array}{l}a = \frac{{17}}{5}\\b = 17\end{array} \right. \Rightarrow P = 34\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.
+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.
+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)
Cách giải:
Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.
Có \(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)
Lời giải
Đáp án D
Phương pháp:
Cho hàm số \(y = {x^n}\)

Cách giải:
\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)
Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.