Câu hỏi:

21/02/2023 763

Gọi \({x_1};\,{x_2}\) là các nghiệm của phương trình \({\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\).

 Khi đó, tích \({x_1}{x_2}\):

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Sử dụng công thức \({\log _{{a^n}}}{b^m} = \frac{m}{n}{\log _a}b\left( {0 < a \ne 1;\,\,b > 0} \right)\), đưa các logarit về cùng cơ số.

Cách giải:

\({\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\)

\( \Leftrightarrow {\left( { - {{\log }_3}x} \right)^2} = \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\)

\( \Leftrightarrow \log _3^2x - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{\log _3}x = 1\\{\log _3}x = \sqrt 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_1} = 3\\{x_2} = {3^{\sqrt 3 }}\end{array} \right. \Leftrightarrow {x_1}{x_2} = {3.3^{\sqrt 3 }} = {3^{\sqrt 3 + !}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.

Xem đáp án » 21/02/2023 13,934

Câu 2:

Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:

Xem đáp án » 21/02/2023 5,437

Câu 3:

Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:

Xem đáp án » 21/02/2023 3,784

Câu 4:

Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:

Xem đáp án » 21/02/2023 2,768

Câu 5:

Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:

Xem đáp án » 21/02/2023 2,434

Câu 6:

Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:

Xem đáp án » 21/02/2023 2,050

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a;\,\,BC = 3a\)\(SA \bot \left( {ABCD} \right)\). Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng \(\left( {SAC} \right)\):

Xem đáp án » 21/02/2023 1,846

Bình luận


Bình luận