Câu hỏi:
21/02/2023 1,389Tìm hàm số \(y = \frac{{ax + b}}{{cx + d}}\) biết rằng đồ thị hàm số cắt trục tung tại điểm \(M\left( {0;1} \right)\) và giao điểm hai đường tiệm cận của hàm số là \(I\left( {1; - 1} \right)\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Đồ thị hàm số bậc nhất trên bậc nhất \(y = \frac{{ax + b}}{{cx + d}}\left( {ad \ne bc} \right)\) có TCN \(y = \frac{a}{c}\) và TCĐ \(y = \frac{{ - d}}{c}\)
Cách giải:
\(M\left( {0;1} \right)\) thuộc đồ thị hàm số \( \Rightarrow \frac{b}{d} = 1 \Leftrightarrow b = d \Rightarrow \) Loại D.
Giao điểm 2 đường tiệm cận của hàm số là \(I\left( {1; - 1} \right)\) nên
Đồ thị hàm số có TCĐ \(x = 1 \Rightarrow \) Loại A.
Đồ thị hàm số có TCN \(y = - 1 \Rightarrow \) Loại CCÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.
Câu 2:
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:
Câu 3:
Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:
Câu 4:
Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:
Câu 5:
Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:
Câu 6:
Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:
Câu 7:
Cho khối chóp tam giác S.ABC. Gọi A’, B’, C’ lần lượt là trung điểm của cạnh SA, SB, SC. Khi đó thể tích khối chóp S.ABC gấp bao nhiêu lần thể tích khối chóp S.A’B’C’.
về câu hỏi!