Câu hỏi:

21/02/2023 420

Tìm số các giá trị nguyên của tham số m để hàm số \(y = \left( {m + 1} \right){x^4} + \left( {3m - 10} \right){x^2} + 2\) có ba cực trị ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Để hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có ba điểm cực trị thì phương trình \(y' = 0\) có 3 nghiệm phân biệt.

Cách giải:

Ta có: \(y' = 4\left( {m + 1} \right){x^3} + 2\left( {3m - 10} \right)x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\2\left( {m + 1} \right){x^2} = 10 - 3m\end{array} \right.\)

Hàm số có ba cực trị \( \Leftrightarrow y' = 0\) có 3 nghiệm phân biệt

\( \Leftrightarrow \left\{ \begin{array}{l}m + 1 \ne 0\\\frac{{10 - 3m}}{{2\left( {m + 1} \right)}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne - 1\\ - 1 < m < \frac{{10}}{3}\end{array} \right. \Leftrightarrow - 1 < m < \frac{{10}}{3}\)

Kết hợp điều kiện \(m \in Z \Rightarrow m \in \left\{ {0;1;2;3} \right\}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.

+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.

+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)

Cách giải:

Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.

\(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)

Câu 2

Lời giải

Đáp án D

Phương pháp:

Cho hàm số \(y = {x^n}\)

Tập xác định của hàm số y = (x - 1)^(-1/2) là: A. D = (- vô cùng; 1) B. D = [1; + vô cùng) (ảnh 1)

Cách giải:

\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)

Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP