Câu hỏi:

21/02/2023 1,676

Cho một tấm nhôm hình chữ nhật ABCD có \(AD = 24cm\). Ta gấp tấm nhôm theo hai cạnh MN, QP vào phía trong đến khi AB, CD trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Tìm x để thể tích khối lăng trụ lớn nhất?

Cho một tấm nhôm hình chữ nhật ABCD có AD = 24cm. Ta gấp tấm nhôm theo hai cạnh  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

\(V = {S_{\Delta ANP}}.MN,\,\,\,\,{V_{max}} \Leftrightarrow {S_{\Delta ANP}}max\), sử dụng BĐT Cô-si.

Cách giải:

Đáy là tam giác cân có cạnh bên là x (cm) và cạnh đáy là \(24 - 2x\left( {cm} \right)\,\,\left( {x < 12} \right)\)

Gọi H là trung điểm của NP \( \Rightarrow AH \bot NP\)

Xét tam giác vuông ANH có: \(AH = \sqrt {A{N^2} - N{H^2}} = \sqrt {{x^2} - {{\left( {12 - x} \right)}^2}} = \sqrt {24x - 144} \) (ĐK: \(24x - 144 \ge 0 \Leftrightarrow x \ge 0\))

\( \Rightarrow {S_{\Delta ANP}} = \frac{1}{2}AH.NP = \frac{1}{2}\sqrt {24x - 144} .\left( {24 - 2x} \right) = S\)

\(V = {S_{ANP}}.AB;\,\,\,{V_{max}} \Leftrightarrow {S_{ANPmax}}\) (Do AB không đổi).

Ta có:

\({S^2} = \frac{1}{4}{\left( {24 - 2x} \right)^2}\left( {24x - 144} \right) = \frac{1}{{{{4.6}^2}}}{\left( {144 - 12x} \right)^2}\left( {24x - 144} \right)\) \( \le \frac{1}{{{{4.6}^2}}}{\left( {\frac{{144 - 12x + 144 - 12x + 24x - 144}}{3}} \right)^2} = \sqrt {786} = 16\sqrt 3 \)

Dấu “=” xảy ra \( \Leftrightarrow 144 - 12x = 24x - 144 \Rightarrow x = 8\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.

Xem đáp án » 21/02/2023 17,326

Câu 2:

Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:

Xem đáp án » 21/02/2023 6,299

Câu 3:

Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:

Xem đáp án » 21/02/2023 4,274

Câu 4:

Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, \(BC = 2a;\,\,\,AA' = 2a\).

 Tính thể tích V của lăng trụ ABC.A’B’C’.

Xem đáp án » 21/02/2023 3,702

Câu 5:

Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:

Xem đáp án » 21/02/2023 3,701

Câu 6:

Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:

Xem đáp án » 21/02/2023 3,504

Câu 7:

Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:

Xem đáp án » 21/02/2023 3,016
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay