Câu hỏi:
21/02/2023 1,154Cho một tấm nhôm hình chữ nhật ABCD có \(AD = 24cm\). Ta gấp tấm nhôm theo hai cạnh MN, QP vào phía trong đến khi AB, CD trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Tìm x để thể tích khối lăng trụ lớn nhất?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
\(V = {S_{\Delta ANP}}.MN,\,\,\,\,{V_{max}} \Leftrightarrow {S_{\Delta ANP}}max\), sử dụng BĐT Cô-si.
Cách giải:
Đáy là tam giác cân có cạnh bên là x (cm) và cạnh đáy là \(24 - 2x\left( {cm} \right)\,\,\left( {x < 12} \right)\)
Gọi H là trung điểm của NP \( \Rightarrow AH \bot NP\)
Xét tam giác vuông ANH có: \(AH = \sqrt {A{N^2} - N{H^2}} = \sqrt {{x^2} - {{\left( {12 - x} \right)}^2}} = \sqrt {24x - 144} \) (ĐK: \(24x - 144 \ge 0 \Leftrightarrow x \ge 0\))
\( \Rightarrow {S_{\Delta ANP}} = \frac{1}{2}AH.NP = \frac{1}{2}\sqrt {24x - 144} .\left( {24 - 2x} \right) = S\)
\(V = {S_{ANP}}.AB;\,\,\,{V_{max}} \Leftrightarrow {S_{ANPmax}}\) (Do AB không đổi).
Ta có:
\({S^2} = \frac{1}{4}{\left( {24 - 2x} \right)^2}\left( {24x - 144} \right) = \frac{1}{{{{4.6}^2}}}{\left( {144 - 12x} \right)^2}\left( {24x - 144} \right)\) \( \le \frac{1}{{{{4.6}^2}}}{\left( {\frac{{144 - 12x + 144 - 12x + 24x - 144}}{3}} \right)^2} = \sqrt {786} = 16\sqrt 3 \)
Dấu “=” xảy ra \( \Leftrightarrow 144 - 12x = 24x - 144 \Rightarrow x = 8\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.
Câu 2:
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:
Câu 3:
Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:
Câu 4:
Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:
Câu 5:
Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:
Câu 6:
Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a;\,\,BC = 3a\) và \(SA \bot \left( {ABCD} \right)\). Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng \(\left( {SAC} \right)\):
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!