Câu hỏi:
21/02/2023 1,070Cho một tấm nhôm hình chữ nhật ABCD có \(AD = 24cm\). Ta gấp tấm nhôm theo hai cạnh MN, QP vào phía trong đến khi AB, CD trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Tìm x để thể tích khối lăng trụ lớn nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
\(V = {S_{\Delta ANP}}.MN,\,\,\,\,{V_{max}} \Leftrightarrow {S_{\Delta ANP}}max\), sử dụng BĐT Cô-si.
Cách giải:
Đáy là tam giác cân có cạnh bên là x (cm) và cạnh đáy là \(24 - 2x\left( {cm} \right)\,\,\left( {x < 12} \right)\)
Gọi H là trung điểm của NP \( \Rightarrow AH \bot NP\)
Xét tam giác vuông ANH có: \(AH = \sqrt {A{N^2} - N{H^2}} = \sqrt {{x^2} - {{\left( {12 - x} \right)}^2}} = \sqrt {24x - 144} \) (ĐK: \(24x - 144 \ge 0 \Leftrightarrow x \ge 0\))
\( \Rightarrow {S_{\Delta ANP}} = \frac{1}{2}AH.NP = \frac{1}{2}\sqrt {24x - 144} .\left( {24 - 2x} \right) = S\)
\(V = {S_{ANP}}.AB;\,\,\,{V_{max}} \Leftrightarrow {S_{ANPmax}}\) (Do AB không đổi).
Ta có:
\({S^2} = \frac{1}{4}{\left( {24 - 2x} \right)^2}\left( {24x - 144} \right) = \frac{1}{{{{4.6}^2}}}{\left( {144 - 12x} \right)^2}\left( {24x - 144} \right)\) \( \le \frac{1}{{{{4.6}^2}}}{\left( {\frac{{144 - 12x + 144 - 12x + 24x - 144}}{3}} \right)^2} = \sqrt {786} = 16\sqrt 3 \)
Dấu “=” xảy ra \( \Leftrightarrow 144 - 12x = 24x - 144 \Rightarrow x = 8\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.
Câu 2:
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:
Câu 3:
Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:
Câu 4:
Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:
Câu 5:
Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:
Câu 6:
Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:
Câu 7:
Cho khối chóp tam giác S.ABC. Gọi A’, B’, C’ lần lượt là trung điểm của cạnh SA, SB, SC. Khi đó thể tích khối chóp S.ABC gấp bao nhiêu lần thể tích khối chóp S.A’B’C’.
về câu hỏi!