Câu hỏi:

21/02/2023 1,154

Cho một tấm nhôm hình chữ nhật ABCD có \(AD = 24cm\). Ta gấp tấm nhôm theo hai cạnh MN, QP vào phía trong đến khi AB, CD trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Tìm x để thể tích khối lăng trụ lớn nhất?

Cho một tấm nhôm hình chữ nhật ABCD có AD = 24cm. Ta gấp tấm nhôm theo hai cạnh  (ảnh 1)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

\(V = {S_{\Delta ANP}}.MN,\,\,\,\,{V_{max}} \Leftrightarrow {S_{\Delta ANP}}max\), sử dụng BĐT Cô-si.

Cách giải:

Đáy là tam giác cân có cạnh bên là x (cm) và cạnh đáy là \(24 - 2x\left( {cm} \right)\,\,\left( {x < 12} \right)\)

Gọi H là trung điểm của NP \( \Rightarrow AH \bot NP\)

Xét tam giác vuông ANH có: \(AH = \sqrt {A{N^2} - N{H^2}} = \sqrt {{x^2} - {{\left( {12 - x} \right)}^2}} = \sqrt {24x - 144} \) (ĐK: \(24x - 144 \ge 0 \Leftrightarrow x \ge 0\))

\( \Rightarrow {S_{\Delta ANP}} = \frac{1}{2}AH.NP = \frac{1}{2}\sqrt {24x - 144} .\left( {24 - 2x} \right) = S\)

\(V = {S_{ANP}}.AB;\,\,\,{V_{max}} \Leftrightarrow {S_{ANPmax}}\) (Do AB không đổi).

Ta có:

\({S^2} = \frac{1}{4}{\left( {24 - 2x} \right)^2}\left( {24x - 144} \right) = \frac{1}{{{{4.6}^2}}}{\left( {144 - 12x} \right)^2}\left( {24x - 144} \right)\) \( \le \frac{1}{{{{4.6}^2}}}{\left( {\frac{{144 - 12x + 144 - 12x + 24x - 144}}{3}} \right)^2} = \sqrt {786} = 16\sqrt 3 \)

Dấu “=” xảy ra \( \Leftrightarrow 144 - 12x = 24x - 144 \Rightarrow x = 8\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.

Xem đáp án » 21/02/2023 13,934

Câu 2:

Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:

Xem đáp án » 21/02/2023 5,437

Câu 3:

Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:

Xem đáp án » 21/02/2023 3,784

Câu 4:

Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:

Xem đáp án » 21/02/2023 2,768

Câu 5:

Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:

Xem đáp án » 21/02/2023 2,434

Câu 6:

Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:

Xem đáp án » 21/02/2023 2,050

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a;\,\,BC = 3a\)\(SA \bot \left( {ABCD} \right)\). Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng \(\left( {SAC} \right)\):

Xem đáp án » 21/02/2023 1,845

Bình luận


Bình luận