Câu hỏi:

21/02/2023 247

Người ta nối trung điểm các cạnh của hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giác ở các góc của hình hộp như hình vẽ bên. Hình còn lại là một đa diện có số đỉnh và số cạnh là:

Người ta nối trung điểm các cạnh của hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giác (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Tính số cạnh và số đỉnh nằm trên một mặt của hình hộp chữ nhật.

Cách giải:

Hình hộp chữ nhật có tất cả 12 cạnh \( \Rightarrow \) Số đỉnh của hình cần biết là 12 đỉnh \( \Rightarrow \) Loại B, C.

Mỗi mặt của hình hộp chữ nhật chứa 4 cạnh của hình cần biết mà hình hộp chữ nhật có 6 mặt \( \Rightarrow \) Số cạnh của hình cần biết là 24 cạnh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.

+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.

+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)

Cách giải:

Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.

\(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)

Câu 2

Lời giải

Đáp án D

Phương pháp:

Cho hàm số \(y = {x^n}\)

Tập xác định của hàm số y = (x - 1)^(-1/2) là: A. D = (- vô cùng; 1) B. D = [1; + vô cùng) (ảnh 1)

Cách giải:

\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)

Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP