Câu hỏi:

21/02/2023 216 Lưu

Tìm tất cả các giá trị thực của tham số m để phương trình \( - {x^3} + 3mx - 2 < - \frac{1}{{{x^3}}}\) nghiệm đúng với mọi \(x \ge 1\)

A. \(m \in \left( { - \infty ;1} \right)\)
B. \(m \in \left( { - \infty ;\frac{2}{3}} \right)\)
C. \(m \in \left( {\frac{2}{3};1} \right)\)

D. \(m \in \left[ {\frac{2}{3}; + \infty } \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

Cô lập m, đưa bất phương trình về dạng \(m < f\left( x \right)\,\,\forall x \in \left[ {a;b} \right] \Rightarrow m < \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Cách giải:

\( - {x^3} + 3mx - 2 < - \frac{1}{{{x^3}}} \Leftrightarrow 3mx < {x^3} + 2 - \frac{1}{{{x^3}}}\,\,\forall x \ge 1 \Leftrightarrow {x^2} + \frac{2}{x} - \frac{1}{{{x^4}}}\,\,\,\forall x \ge 1\)

Xét hàm số \(f\left( x \right) = {x^2} + \frac{2}{x} - \frac{1}{{{x^4}}}\) với mọi \(x \ge 1 \Leftrightarrow 3m < \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right)\)

Ta có: \(f'\left( x \right) = 2x - \frac{2}{{{x^2}}} + \frac{4}{{{x^4}}} = \frac{{2{x^6} - 2{x^3} + 4}}{{{x^5}}} = \frac{{2\left( {{x^3} - \frac{1}{2}} \right) + \frac{7}{2}}}{{{x^5}}} > 0\,\,\,\forall x \ge 1\)

\( \Rightarrow 3m < f\left( 1 \right) = 2 \Leftrightarrow m < \frac{2}{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.

+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.

+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)

Cách giải:

Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.

\(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)

Câu 2

A. \(D = \left( { - \infty ;1} \right)\)     
B. \(D = \left[ {1; + \infty } \right)\)
C. \(D = \left( {0;1} \right)\)

D. \(D = \left( {1; + \infty } \right)\)

Lời giải

Đáp án D

Phương pháp:

Cho hàm số \(y = {x^n}\)

Tập xác định của hàm số y = (x - 1)^(-1/2) là: A. D = (- vô cùng; 1) B. D = [1; + vô cùng) (ảnh 1)

Cách giải:

\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)

Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;2} \right)\)
B. \(\left( {3; + \infty } \right)\)
C. \(\left( {2; + \infty } \right)\)

D. \(\left( {1; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP