Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a;\,\,BC = 3a\) và \(SA \bot \left( {ABCD} \right)\). Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng \(\left( {SAC} \right)\):
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a;\,\,BC = 3a\) và \(SA \bot \left( {ABCD} \right)\). Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng \(\left( {SAC} \right)\):
D. \(\frac{{a\sqrt {10} }}{{10}}\)
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Sử dụng công thức đổi điểm đưa về tính khoảng cách từ B đến (SAC).

Cách giải:
Gọi M là trung điểm của SA ta có:
\(BG \cap \left( {SAC} \right) = M \Rightarrow \frac{{d\left( {G;\left( {SAC} \right)} \right)}}{{d\left( {B;\left( {SAC} \right)} \right)}} = \frac{{GM}}{{BM}} = \frac{1}{3}\)
\( \Rightarrow d\left( {G;\left( {SAC} \right)} \right) = \frac{1}{3}d\left( {B;\left( {SAC} \right)} \right)\)
Trong (ABCD) kẻ \(BH \bot AC\) ta có:
\(\left\{ \begin{array}{l}BH \bot AC\\BH \bot SA\end{array} \right. \Rightarrow BH \bot \left( {SAC} \right) \Rightarrow d\left( {B;\left( {SAC} \right)} \right) = BH\)
Áp dụng hệ thức lượng trong tam giác vuông ABC có: \(AH = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{a.3a}}{{\sqrt {{a^2} + 9{a^2}} }} = \frac{{3a}}{{\sqrt {10} }}\)
\( \Rightarrow d\left( {G;\left( {SAC} \right)} \right) = \frac{{a\sqrt {10} }}{{10}}\)Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. \(S = 2\)
Lời giải
Đáp án A
Phương pháp:
+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.
+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.
+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)
Cách giải:
Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.
Có \(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)
Câu 2
D. \(D = \left( {1; + \infty } \right)\)
Lời giải
Đáp án D
Phương pháp:
Cho hàm số \(y = {x^n}\)
Cách giải:
\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)
Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)
Câu 3
D. 2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. \(V = 4{a^3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(\left( {1; + \infty } \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. 2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.