Câu hỏi:
21/02/2023 173
Cắt hình nón \(\left( N \right)\) có đỉnh S bởi một mặt phẳng chứa trục hình nón ta dược một tam giác vuông cân có cạnh huyền bằng \(a\sqrt 2 \); BC là một dây cung của hình tròn đáy của \(\left( N \right)\) sao cho mặt phẳng \(\left( {SBC} \right)\) tạo với đáy góc \({60^0}\). Tính diện tích S của tam giác SBC.
Cắt hình nón \(\left( N \right)\) có đỉnh S bởi một mặt phẳng chứa trục hình nón ta dược một tam giác vuông cân có cạnh huyền bằng \(a\sqrt 2 \); BC là một dây cung của hình tròn đáy của \(\left( N \right)\) sao cho mặt phẳng \(\left( {SBC} \right)\) tạo với đáy góc \({60^0}\). Tính diện tích S của tam giác SBC.
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Gọi M là trung điểm của BC, xác định góc giữa (SBC) và đáy.

+) \({S_{\Delta SBC}} = \frac{1}{2}SM.BC\)
Cách giải: Gọi M là trung điểm của BC \( \Rightarrow OM \bot BC\) (quan hệ vuông góc giữa đường kính và dây cung).
Ta có: \(SM = \frac{{SO}}{{\sin {{60}^0}}} = \frac{{a\sqrt 6 }}{3} \Rightarrow BC = 2BM = 2\sqrt {S{B^2} - S{M^2}} = \frac{{2a}}{{\sqrt 3 }}\)
Vậy \({S_{\Delta SBC}} = \frac{1}{2}SM.BC = \frac{1}{2}.\frac{{a\sqrt 6 }}{3}.\frac{{2a}}{{\sqrt 3 }} = \frac{{{a^2}\sqrt 2 }}{3}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.
+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.
+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)
Cách giải:
Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.
Có \(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)
Lời giải
Đáp án D
Phương pháp:
Cho hàm số \(y = {x^n}\)

Cách giải:
\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)
Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.