Câu hỏi:

21/02/2023 168

Cho khối chóp S.ABCD có thể tích bằng 81. Gọi M, N, P lần lượt là trọng tâm các mặt bên \(\left( {SAB} \right);\,\left( {SBC} \right);\,\left( {SCD} \right);\,\left( {SDC} \right)\). Tính thể tích V của khối chóp S.MNPQ?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Sử dụng công thức Simpson tính tỉ lệ thể tích, lưu ý chỉ áp dụng đối với chóp tam giác.

Cách giải:

Cho khối chóp S.ABCD có thể tích bằng 81. Gọi M, N, P lần lượt là trọng tâm các mặt bên  (ảnh 1)

Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.

Ta có \({S_{EFGH}} = \frac{1}{2}{S_{ABCD}} \Rightarrow {V_{S.EFGH}} = \frac{1}{2}{V_{S.ABCD}}\)

\(\frac{{{V_{S.MQN}}}}{{{V_{S.EHF}}}} = \frac{{SM}}{{SE}}.\frac{{SQ}}{{SH}}.\frac{{SN}}{{SF}} = {\left( {\frac{2}{3}} \right)^2} = \frac{8}{{27}} \Rightarrow {V_{S.MQN}} = \frac{8}{{27}}{V_{S.EFH}} = \frac{8}{{27}}.\frac{1}{2}{V_{S.EFGH}} = \frac{4}{{27}}{V_{S.EFGH}}\)

\(\frac{{{V_{S.PQN}}}}{{{V_{S.GHF}}}} = \frac{{SP}}{{SG}}.\frac{{SQ}}{{SH}}.\frac{{SN}}{{SF}} = {\left( {\frac{2}{3}} \right)^2} = \frac{8}{{27}} \Rightarrow {V_{S.PQN}} = \frac{8}{{27}}{V_{S.GFH}} = \frac{8}{{27}}.\frac{1}{2}{V_{S.EFGH}} = \frac{4}{{27}}{V_{S.EFGH}}\)

\( \Rightarrow {V_{S.MQN}} + {V_{S.PQN}} = 2.\frac{4}{{27}}{V_{S.EFGH}} = \frac{8}{{27}}{V_{EFGH}} = \frac{4}{{27}} = \frac{4}{{27}}{V_{S.ABCD}} = 12\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) có hai điểm cực trị là A, B. Tính diện tích tam giác OAB.

Xem đáp án » 21/02/2023 13,934

Câu 2:

Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - \frac{1}{2}}}\) là:

Xem đáp án » 21/02/2023 5,438

Câu 3:

Giá trị nhỏ nhất của hàm số \(y = - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\) là:

Xem đáp án » 21/02/2023 3,785

Câu 4:

Đồ thị hàm số \(y = \frac{{2x - 3}}{{{x^2} + 4x + 4}}\) có tiệm cận đứng \(x = a\) và tiệm cận ngang \(y = b\). Khi đó giá trị của \(a + 2b\) bằng:

Xem đáp án » 21/02/2023 2,769

Câu 5:

Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\) là:

Xem đáp án » 21/02/2023 2,435

Câu 6:

Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\) là:

Xem đáp án » 21/02/2023 2,051

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a;\,\,BC = 3a\)\(SA \bot \left( {ABCD} \right)\). Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng \(\left( {SAC} \right)\):

Xem đáp án » 21/02/2023 1,846

Bình luận


Bình luận