Câu hỏi:

21/02/2023 449

Cho hình chóp S.ABC có \(SA = a;\,\,\,SB = a\sqrt 2 ;\,\,\,SC = a\sqrt 3 \). Tính thể tích lớn nhất \({V_{max}}\) của khối chóp đã cho?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Chứng minh \({V_{S.ABC}} \le \frac{1}{6}SA.SB.SC\)

Cách giải:

Gọi H là hình chiếu của A trên (SBC) \( \Rightarrow AH \bot \left( {SBC} \right)\)

Ta có: \({S_{\Delta SBC}} = \frac{1}{2}SB.SC.\sin BSC\)

\( \Rightarrow {V_{S.ABC}} = \frac{1}{3}AH.{S_{\Delta SBC}} = \frac{1}{6}AH.SB.SC.\sin BSC \le \frac{1}{6}SA.SB.SC = \frac{{{a^3}\sqrt 6 }}{3}\)

Vậy \({V_{max}} = \frac{{{a^3}\sqrt 6 }}{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

+) Giải phương trình \(y' = 0\) xác định tọa độ các điểm cực trị AB.

+) Nhận xét các điểm A, B. Chứng minh tam giác OAB vuông tại O.

+) \({S_{\Delta OAB}} = \frac{1}{2}OA.OB\)

Cách giải:

Ta có: \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4 \Rightarrow A\left( {0;4} \right) \in Oy\\x = 2 \Rightarrow y = 0 \Rightarrow B\left( {2;0} \right) \in Ox\end{array} \right. \Rightarrow \Delta OAB\) vuông tại O.

\(OA = 4;\,\,OB = 2 \Rightarrow {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.2 = 4\)

Câu 2

Lời giải

Đáp án D

Phương pháp:

Cho hàm số \(y = {x^n}\)

Tập xác định của hàm số y = (x - 1)^(-1/2) là: A. D = (- vô cùng; 1) B. D = [1; + vô cùng) (ảnh 1)

Cách giải:

\( - \frac{1}{2} \notin Z \Rightarrow \) Hàm số xác định \(x - 1 > 0 \Leftrightarrow x > 1\)

Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP