Câu hỏi:
21/02/2023 136Cho hàm số \(y = {x^4} - 2m{x^2} + m\left( C \right)\) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm tham số m để tiếp tuyến \(\Delta \) với đồ thị (C) tại A cắt đường tròn \(\left( T \right):{x^2} + {\left( {y - 1} \right)^2} = 4\) tạo thành một dây cung có độ dài nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Viết phương trình tiếp tuyến của \(\left( C \right)\) tại A.
+) Để \(\left( \Delta \right)\) cắt đường tròn \(\left( T \right)\) tạo thành một dây cung có độ dài nhỏ nhất thì \(d\left( {I;\Delta } \right)\) lớn nhất với I là tâm của đường tròn \(\left( T \right)\).
Cách giải:
\({x_A} = 1 \Rightarrow {y_A} = 1 - 2m + m = 1 - m \Rightarrow A\left( {1;1 - m} \right)\)
Ta có \(y' = 4{x^3} - 4mx \Rightarrow y'\left( 1 \right) = 4 - 4m\)
\( \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(A\left( {1;1 - m} \right)\) là
\(y = \left( {4 - 4m} \right)\left( {x - 1} \right) + 1 - m \Leftrightarrow \left( {4 - 4m} \right)x - y + 3m - 3 = 0\,\,\left( \Delta \right)\)
Đường tròn \(\left( T \right)\) có tâm \(I\left( {0;1} \right)\) và bán kính \(R = 2\)
Để \(\left( \Delta \right)\) cắt đường tròn \(\left( T \right)\) tạo thành một dây cung có độ dài nhỏ nhất thì \(d\left( {I;\Delta } \right)\) lớn nhất
Ta có \(d\left( {I;\Delta } \right) = \frac{{\left| { - 1 + 3m - 3} \right|}}{{\sqrt {{{\left( {4 - 4m} \right)}^2} + 1} }} = \frac{{\left| {3m - 4} \right|}}{{\sqrt {{{\left( {4 - 4m} \right)}^2} + 1} }}\)
Đến đây ta thử lần lượt các đáp án ta thấy khi \(m = \frac{{13}}{{16}}\) thì \(d{\left( {I;\Delta } \right)_{max}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!