Câu hỏi:

21/02/2023 136

Cho hàm số \(y = {x^4} - 2m{x^2} + m\left( C \right)\) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm tham số m để tiếp tuyến \(\Delta \) với đồ thị (C) tại A cắt đường tròn \(\left( T \right):{x^2} + {\left( {y - 1} \right)^2} = 4\) tạo thành một dây cung có độ dài nhỏ nhất.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Viết phương trình tiếp tuyến của \(\left( C \right)\) tại A.

+) Để \(\left( \Delta \right)\) cắt đường tròn \(\left( T \right)\) tạo thành một dây cung có độ dài nhỏ nhất thì \(d\left( {I;\Delta } \right)\) lớn nhất với I là tâm của đường tròn \(\left( T \right)\).

Cách giải:

\({x_A} = 1 \Rightarrow {y_A} = 1 - 2m + m = 1 - m \Rightarrow A\left( {1;1 - m} \right)\)

Ta có \(y' = 4{x^3} - 4mx \Rightarrow y'\left( 1 \right) = 4 - 4m\)

\( \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(A\left( {1;1 - m} \right)\)

\(y = \left( {4 - 4m} \right)\left( {x - 1} \right) + 1 - m \Leftrightarrow \left( {4 - 4m} \right)x - y + 3m - 3 = 0\,\,\left( \Delta \right)\)

Đường tròn \(\left( T \right)\) có tâm \(I\left( {0;1} \right)\) và bán kính \(R = 2\)

Để \(\left( \Delta \right)\) cắt đường tròn \(\left( T \right)\) tạo thành một dây cung có độ dài nhỏ nhất thì \(d\left( {I;\Delta } \right)\) lớn nhất

Ta có \(d\left( {I;\Delta } \right) = \frac{{\left| { - 1 + 3m - 3} \right|}}{{\sqrt {{{\left( {4 - 4m} \right)}^2} + 1} }} = \frac{{\left| {3m - 4} \right|}}{{\sqrt {{{\left( {4 - 4m} \right)}^2} + 1} }}\)

Đến đây ta thử lần lượt các đáp án ta thấy khi \(m = \frac{{13}}{{16}}\) thì \(d{\left( {I;\Delta } \right)_{max}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:

Xem đáp án » 22/02/2023 9,736

Câu 2:

Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .

Xem đáp án » 21/02/2023 8,523

Câu 3:

Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.

Xem đáp án » 21/02/2023 6,669

Câu 4:

Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:

Xem đáp án » 21/02/2023 6,089

Câu 5:

Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là

Xem đáp án » 21/02/2023 3,830

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.

Xem đáp án » 21/02/2023 2,020

Câu 7:

Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)

Xem đáp án » 21/02/2023 1,761

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL