Câu hỏi:
21/02/2023 236Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) cắt trục Ox tại ba điểm có hoành độ \(a < b < c\) như hình vẽ. Xét 4 mệnh đề sau:
\(\left( 1 \right):f\left( c \right) > f\left( a \right) > f\left( b \right)\)
\(\left( 2 \right):f\left( c \right) > f\left( b \right) > f\left( a \right)\)
\(\left( 3 \right):f\left( a \right) > f\left( b \right) > f\left( c \right)\)
\(\left( 4 \right):f\left( a \right) > f\left( b \right)\)
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Xác định các nghiệm của phương trình \(f'\left( x \right) = 0\) và xét dấu của \(f'\left( x \right)\), từ đó lập BBT của hàm số \(f\left( x \right)\) và kết luận.
Cách giải:
Ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = a\\x = b\\x = c\end{array} \right.\)
Lập BBT của đồ thị hàm số \(y = f\left( x \right)\) như sau:
Dựa vào BBT ta thấy chỉ có 1 mệnh đề đúng là \(f\left( a \right) > f\left( b \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!