Câu hỏi:

21/02/2023 492

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) cắt trục Ox tại ba điểm có hoành độ \(a < b < c\) như hình vẽ. Xét 4 mệnh đề sau:

\(\left( 1 \right):f\left( c \right) > f\left( a \right) > f\left( b \right)\)

\(\left( 2 \right):f\left( c \right) > f\left( b \right) > f\left( a \right)\)

\(\left( 3 \right):f\left( a \right) > f\left( b \right) > f\left( c \right)\)

\(\left( 4 \right):f\left( a \right) > f\left( b \right)\)

 Trong các mệnh đề trên có bao nhiêu mệnh đề đúng ?

Cho hàm số y = f(x) có đồ thị y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < n < c như hình vẽ (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Xác định các nghiệm của phương trình \(f'\left( x \right) = 0\) và xét dấu của \(f'\left( x \right)\), từ đó lập BBT của hàm số \(f\left( x \right)\) và kết luận.

Cách giải:

Ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = a\\x = b\\x = c\end{array} \right.\)

Lập BBT của đồ thị hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số y = f(x) có đồ thị y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < n < c như hình vẽ (ảnh 2)

Dựa vào BBT ta thấy chỉ có 1 mệnh đề đúng là \(f\left( a \right) > f\left( b \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)

Cách giải:

\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)

Câu 2

Lời giải

Đáp án A

Phương pháp:

+) Tìm TXĐ của hàm số.

+) Tính đạo hàm của hàm số.

+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng

Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng

\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP