Câu hỏi:
21/02/2023 1,130
Cho một đa giác đều 2n đỉnh \(\left( {n \ge 2,\,\,n \in N} \right)\). Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45.
Cho một đa giác đều 2n đỉnh \(\left( {n \ge 2,\,\,n \in N} \right)\). Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45.
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
+) Đa giác đều 2n đỉnh nội tiếp đường tròn trong đó có đường chéo là đường kính của đường tròn ngoại tiếp đó. n
+) Cứ hai đường kính bất kì cho ta một hình chữ nhật.
Cách giải:
Đa giác đều 2n đỉnh nội tiếp đường tròn trong đó có n đường chéo là đường kính của đường tròn ngoại tiếp đó.
Cứ hai đường kính bất kì cho ta một hình chữ nhật, do đó số hình chữ nhật được tạo thành từ bốn trong 2n đỉnh của tứ giác đó là \(C_n^2 = 45 \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 45 \Leftrightarrow n\left( {n - 1} \right) = 90 \Leftrightarrow n = 10\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)
Cách giải:
\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)
Lời giải
Đáp án A
Phương pháp:
+) Tìm TXĐ của hàm số.
+) Tính đạo hàm của hàm số.
+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng
Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng
\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.