Câu hỏi:

21/02/2023 201

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x + \left( {m + 1} \right)y - 2z + m = 0\)\(\left( Q \right):2x - y + 3 = 0\), với m là tham số thực. Để \(\left( P \right)\)\(\left( Q \right)\) vuông góc thì giá trị của bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp: \(\left( P \right) \bot \left( Q \right) \Leftrightarrow {\overrightarrow n _{\left( P \right)}}.{\overrightarrow n _{\left( Q \right)}} = 0\)

Cách giải:

\({\overrightarrow n _{\left( P \right)}} = \left( {1;m + 1; - 2} \right);\,\,\,{\overrightarrow n _{\left( Q \right)}} = \left( {2; - 1;0} \right)\)

\(\left( P \right) \bot \left( Q \right) \Leftrightarrow {\overrightarrow n _{\left( P \right)}}.{\overrightarrow n _{\left( Q \right)}} = 0 \Leftrightarrow 2 - \left( {m + 1} \right) = 0 \Leftrightarrow m = 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)

Cách giải:

\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)

Câu 2

Lời giải

Đáp án A

Phương pháp:

+) Tìm TXĐ của hàm số.

+) Tính đạo hàm của hàm số.

+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng

Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng

\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP