Câu hỏi:
21/02/2023 63Cho hàm số \(y = \frac{{2x - 1}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Tìm tất cả các giá trị thực của tham số m để đường thẳng \(d:y = x + m\) và cắt (C) tại hai điểm phân biệt A, B sao cho \(AB = 4\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình hoành độ giao điểm có hai nghiệm phân biệt.
+) Sử dụng hệ thức Vi-et tính độ dài AB: \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \)
Cách giải:
ĐK: \(x \ne 1\)
Xét phương trình hoành độ giao điểm:
\(\frac{{2x - 1}}{{x - 1}} = x + m \Leftrightarrow 2x - 1 = {x^2} + mx - x - m \Leftrightarrow {x^2} + \left( {m - 3} \right)x - m + 1 = 0\,\,\,\left( * \right)\)
Để \(\left( d \right)\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \( \Leftrightarrow \) pt (*) có 2 nghiệm phân biệt
\( \Leftrightarrow \Delta = {\left( {m - 3} \right)^2} - 4\left( { - m + 1} \right) = {m^2} - 2m + 5 > 0\) (luôn đúng)
Giả sử \({x_A};\,\,{x_B}\) là 2 nghiệm phân biệt của phương trình (*) ta có:
\(A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( {{y_A} - {y_B}} \right)^2}\)
\(A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( {{x_A} + m - {x_B} - m} \right)^2}\)
\(A{B^2} = 2{\left( {{x_A} - {x_B}} \right)^2}\)
\(A{B^2} = 2\left[ {{{\left( {{x_A} + {x_B}} \right)}^2} - 4{x_A}{x_B}} \right]\)
Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_A} + {x_B} = - m + 3\\{x_A}{x_B} = - m + 1\end{array} \right.\)
\( \Rightarrow A{B^2} = 2\left[ {{{\left( { - m + 3} \right)}^2} - 4\left( { - m + 1} \right)} \right] = 16\)
\( \Leftrightarrow {m^2} - 6m + 9 + 4m - 4 = 8\)
\( \Leftrightarrow {m^2} - 2m - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 3\\m = - 1\end{array} \right.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!