Câu hỏi:
21/02/2023 1,249Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên R và có đồ thị của hàm \(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {2 - {x^2}} \right)\). Mệnh đề nào dưới đây đúng ?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Tính đạo hàm của hàm số g(x) và tìm các điểm cực trị, các khoảng đơn điệu của hàm số.
Sử dụng công thức tính đạo hàm của hàm hợp \(\left[ {f\left( {u\left( x \right)} \right)} \right]' = f'\left( u \right).u'\left( x \right)\)
Cách giải:
\(g'\left( x \right) = - 2x.f'\left( {2 - {x^2}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\f'\left( {2 - {x^2}} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\2 - {x^2} = - 1\\2 - {x^2} = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 3 \end{array} \right.\)
Do đó đáp án A sai.
Với \(x \in \left( { - \infty ;2} \right)\) ta có \(2 - {x^2} \in \left( { - \infty ; - 2} \right) \Rightarrow f'\left( {2 - {x^2}} \right) < 0\), tuy nhiên \(g'\left( x \right) = - 2x.f'\left( {2 - {x^2}} \right)\), chưa kết luận được dấu của \(g'\left( x \right)\) trên \(\left( { - \infty ;2} \right) \Rightarrow \) B sai.
Với \(x \in \left( {2; + \infty } \right) \Rightarrow 2 - {x^2} \in \left( { - \infty ; - 2} \right) \Rightarrow f'\left( {2 - {x^2}} \right) < 0\), tuy nhiên \(g'\left( x \right) = - 2x.f'\left( {2 - {x^2}} \right)\), chưa kết luận được dấu của \(g'\left( x \right)\) trên \(\left( {2; + \infty } \right) \Rightarrow \) C sai.
Với \(x \in \left( { - 1;0} \right) \Rightarrow 2 - {x^2} \in \left( {1;2} \right) \Rightarrow f'\left( {2 - {x^2}} \right) < 0\)
\(x \in \left( { - 1;0} \right) \Rightarrow x < 0 \Rightarrow g'\left( x \right) = - 2xf'\left( {2 - {x^2}} \right) < 0 \Rightarrow \) Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 1;0} \right) \Rightarrow \) D đúng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 4:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;2; - 1} \right)\). Viết phương trình mặt cầu \(\left( S \right)\) có tâm và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn có bán kính bằng 5.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận