Câu hỏi:
21/02/2023 1,134Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên R và có đồ thị của hàm \(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {2 - {x^2}} \right)\). Mệnh đề nào dưới đây đúng ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Tính đạo hàm của hàm số g(x) và tìm các điểm cực trị, các khoảng đơn điệu của hàm số.
Sử dụng công thức tính đạo hàm của hàm hợp \(\left[ {f\left( {u\left( x \right)} \right)} \right]' = f'\left( u \right).u'\left( x \right)\)
Cách giải:
\(g'\left( x \right) = - 2x.f'\left( {2 - {x^2}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\f'\left( {2 - {x^2}} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\2 - {x^2} = - 1\\2 - {x^2} = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 3 \end{array} \right.\)
Do đó đáp án A sai.
Với \(x \in \left( { - \infty ;2} \right)\) ta có \(2 - {x^2} \in \left( { - \infty ; - 2} \right) \Rightarrow f'\left( {2 - {x^2}} \right) < 0\), tuy nhiên \(g'\left( x \right) = - 2x.f'\left( {2 - {x^2}} \right)\), chưa kết luận được dấu của \(g'\left( x \right)\) trên \(\left( { - \infty ;2} \right) \Rightarrow \) B sai.
Với \(x \in \left( {2; + \infty } \right) \Rightarrow 2 - {x^2} \in \left( { - \infty ; - 2} \right) \Rightarrow f'\left( {2 - {x^2}} \right) < 0\), tuy nhiên \(g'\left( x \right) = - 2x.f'\left( {2 - {x^2}} \right)\), chưa kết luận được dấu của \(g'\left( x \right)\) trên \(\left( {2; + \infty } \right) \Rightarrow \) C sai.
Với \(x \in \left( { - 1;0} \right) \Rightarrow 2 - {x^2} \in \left( {1;2} \right) \Rightarrow f'\left( {2 - {x^2}} \right) < 0\)
\(x \in \left( { - 1;0} \right) \Rightarrow x < 0 \Rightarrow g'\left( x \right) = - 2xf'\left( {2 - {x^2}} \right) < 0 \Rightarrow \) Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 1;0} \right) \Rightarrow \) D đúng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!