Câu hỏi:
22/02/2023 178Cho tam giác ABC vuông tại A, \(AB = 6cm,\,\,AC = 8cm\). Gọi \({V_1}\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và \({V_2}\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC. Khi đó, tỷ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Khi quay một tam giác vuông quanh 1 cạnh góc vuông ta nhận được một khối nón có chiều cao chính là cạnh góc vuông đó và bán kính đáy là cạnh góc vuông còn lại.
Cách giải:
Khi quay tam giác vuông ABC quanh cạnh AB ta có \({V_1} = \pi .A{C^2}.AB = \pi {.8^2}.6\left( {c{m^3}} \right)\)
Khi quay tam giác vuông ABC quanh cạnh AC ta có
\( \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\pi {{.8}^2}.6}}{{\pi {{.6}^2}.8}} = \frac{8}{6} = \frac{4}{3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!