Câu hỏi:

22/02/2023 162 Lưu

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất bao nhiêu mặt.

A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

Dựa vào khái niệm khối đa diện.

Cách giải:

Mỗi đỉnh của hành đa diện là đỉnh chung của ít nhất ba mặt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

. Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right)\)

B. Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right)\)

C. Hàm số có đạo hàm \(y' = 1 + \ln x\)

D. Hàm số có tập xác định là \(D = \left( {0; + \infty } \right)\)

Lời giải

Đáp án A

Phương pháp:

+) Tìm TXĐ của hàm số.

+) Tính đạo hàm của hàm số.

+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng

Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng

\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng

Lời giải

Đáp án B

Phương pháp:

Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)

Cách giải:

\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)

Câu 3

A. \(D = R\backslash \left\{ {k\pi ,\,\,k \in Z} \right\}\)
B. \(D = R\backslash \left\{ {\frac{{k\pi }}{2},\,\,k \in Z} \right\}\)
C. \(D = R\backslash \left\{ {\frac{\pi }{2} + k\pi ,\,\,k \in Z} \right\}\)

D. \(D = R\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(m \le - 1\) hoặc \(m \ge 2\)

B. \(m \le - 1\)

C. \(m \ge 2\)

D. \( - 1 \le m \le 2\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 25\)

B. \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 16\)

C. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 34\)

D. \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP