Câu hỏi:
22/02/2023 218Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều. Mặt phẳng \(\left( {A'BC} \right)\) tạo với đáy góc \({30^0}\) và tam giác A’BC có diện tích bằng \(8{a^2}\). Tính thể tích V của khối lăng trụ đã cho.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
+) Xác định góc giữa hai mặt phẳng (A’BC) và (ABC).
+) Đặt \(AB = x\), tính diện tích tam giác A’BC theo x, từ đó tìm x.
+) \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}}\)
Cách giải: Gọi E là trung điểm của BC ta có:
\(\left\{ \begin{array}{l}AE \bot BC\\AA' \bot BC\end{array} \right. \Rightarrow BC \bot \left( {AA'E} \right) \Rightarrow BC \bot A'E\)
\( \Rightarrow \left( {\left( {A'BC} \right);\left( {ABC} \right)} \right) = \left( {A'E;AE} \right) = A'EA = {30^0}\)
Đặt \(AB = x\) ta có: \(AE = \frac{{x\sqrt 3 }}{2}\)
\( \Rightarrow \cos {30^0} = \frac{{AE}}{{A'E}} \Rightarrow A'E = \frac{{AE}}{{\cos {{30}^0}}} = x\)
\({S_{\Delta A'BC}} = \frac{1}{2}A'E.BC = \frac{1}{2}{x^2} = 8{a^2} \Leftrightarrow {x^2} = 16{a^2} \Leftrightarrow a = 4a\)
\( \Rightarrow {S_{\Delta ABC}} = \frac{{{{\left( {4a} \right)}^2}\sqrt 3 }}{4} = 4\sqrt 3 {a^2}\)
Xét tam giác vuông A’AE có \(AA' = AE.tan{30^0} = \frac{{4a\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{3} = 2a\)
Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}} = 2a.4\sqrt 3 {a^2} = 8\sqrt 3 {a^3}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 4:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!