Câu hỏi:

22/02/2023 514

Cho số phức z w thỏa mãn \(z + {\rm{w}} = 3 + 4i\)\(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

+) Rút z theo w, tìm tập hợp các điểm biểu diễn số phức w.

+) Biểu diễn hình học tất cả các yếu tố có trong bài toán.

+) Tìm điều kiện để P đạt giá trị lớn nhất.

Cách giải:

\(z + {\rm{w}} = 3 + 4i \Rightarrow z = 3 + 4i - {\rm{w}} \Rightarrow \left| {3 + 4i - 2w} \right| = 9 \Leftrightarrow \left| {{\rm{w}} - \frac{3}{2} - 2i} \right| = \frac{9}{2}\)

Cho số phức z và w thỏa mãn z + w = 3 + 4i và |z - w| = 9. Tìm giá trị lớn nhất của biểu thức (ảnh 1)

Khi đó tập hợp các điểm biểu diễn số phức w là đường tròn tâm \(I\left( {\frac{3}{2};2} \right)\) bán kính \(R = \frac{9}{2}\)

Ta có: \(T = \left| z \right| + \left| {\rm{w}} \right| = \left| {{\rm{w}} - 3 - 4i} \right| + \left| {\rm{w}} \right|\)

Gọi M là điểm biểu diễn số phức w, \(A\left( {3;4} \right)\) là điểm biểu diễn số phức \(z = 3 + 4i\). Dễ thấy I là trung điểm của OA.

Khi đó \(P = MO + MA\)

\({P_{max}} \Leftrightarrow OM = OA \Leftrightarrow MI \bot OA\)

Ta có: \(OI = \sqrt {\frac{9}{4} + 4} = \frac{5}{2},\,\,\,IM = R = \frac{9}{2}\)

\( \Rightarrow OM = \sqrt {\frac{{25}}{4} + \frac{{81}}{4}} = \frac{{\sqrt {106} }}{2}\)

\( \Rightarrow {P_{max}} = 2OM = \sqrt {106} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)

Cách giải:

\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)

Câu 2

Lời giải

Đáp án A

Phương pháp:

+) Tìm TXĐ của hàm số.

+) Tính đạo hàm của hàm số.

+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng

Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng

\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP