Câu hỏi:
22/02/2023 453Cho số phức z và w thỏa mãn \(z + {\rm{w}} = 3 + 4i\) và \(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+) Rút z theo w, tìm tập hợp các điểm biểu diễn số phức w.
+) Biểu diễn hình học tất cả các yếu tố có trong bài toán.
+) Tìm điều kiện để P đạt giá trị lớn nhất.
Cách giải:
\(z + {\rm{w}} = 3 + 4i \Rightarrow z = 3 + 4i - {\rm{w}} \Rightarrow \left| {3 + 4i - 2w} \right| = 9 \Leftrightarrow \left| {{\rm{w}} - \frac{3}{2} - 2i} \right| = \frac{9}{2}\)
Khi đó tập hợp các điểm biểu diễn số phức w là đường tròn tâm \(I\left( {\frac{3}{2};2} \right)\) bán kính \(R = \frac{9}{2}\)
Ta có: \(T = \left| z \right| + \left| {\rm{w}} \right| = \left| {{\rm{w}} - 3 - 4i} \right| + \left| {\rm{w}} \right|\)
Gọi M là điểm biểu diễn số phức w, \(A\left( {3;4} \right)\) là điểm biểu diễn số phức \(z = 3 + 4i\). Dễ thấy I là trung điểm của OA.
Khi đó \(P = MO + MA\)
\({P_{max}} \Leftrightarrow OM = OA \Leftrightarrow MI \bot OA\)
Ta có: \(OI = \sqrt {\frac{9}{4} + 4} = \frac{5}{2},\,\,\,IM = R = \frac{9}{2}\)
\( \Rightarrow OM = \sqrt {\frac{{25}}{4} + \frac{{81}}{4}} = \frac{{\sqrt {106} }}{2}\)
\( \Rightarrow {P_{max}} = 2OM = \sqrt {106} \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 4:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!