Câu hỏi:
22/02/2023 466Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành 3 đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài ta được hình 2. Khi quay hình 2 xung quanh trục d ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Sử dụng các công thức tính thể tích khối trụ, khối nón.
Cách giải:
Kẻ PS, QR lần lượt qua I và K và vuông góc với AB.
Dễ thấy P, Q, R, S lần lượt là trung điểm của AE, BF, CH, DG.
Hình chữ nhật PQRS có \(PQ = \frac{1}{2} + 1 + \frac{1}{2} = 2,\,\,QK = \frac{{\sqrt 3 }}{2} \Rightarrow QR = \sqrt 3 \)
Quay hình chữ nhật PQRS quanh d ta được \({V_1} = \pi {\left( {\frac{{PQ}}{2}} \right)^2}QR = \pi {.1^2}.\sqrt 3 = \sqrt 3 \pi \)
Khi quay tam giác MEF quanh d ta được \({V_2} = \frac{1}{3}\pi .{\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi }}{{24}}\)
Tương tự khi quay tam giác NGH quanh d ta được khối tròn xoay có thể tích \({V_2}\)
Xét tam giác vuông API có: \(PI = \frac{{\sqrt 3 }}{2}\)
Khi quay tam giác API quanh d ta được \({V_3} = \frac{1}{3}\pi .A{P^2}.PI = \frac{1}{3}\pi {\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi }}{{24}}\)
Vậy khi xoay hình đã cho quanh d ta được vật tròn xoay có thể tích:
\(V = {V_1} + 2{V_2} + 4.\frac{{{V_3}}}{1} = \frac{{7\sqrt 3 \pi }}{6}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 3:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 4:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;2; - 1} \right)\). Viết phương trình mặt cầu \(\left( S \right)\) có tâm và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn có bán kính bằng 5.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận