Câu hỏi:
22/02/2023 229Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành 3 đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài ta được hình 2. Khi quay hình 2 xung quanh trục d ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Sử dụng các công thức tính thể tích khối trụ, khối nón.
Cách giải:
Kẻ PS, QR lần lượt qua I và K và vuông góc với AB.
Dễ thấy P, Q, R, S lần lượt là trung điểm của AE, BF, CH, DG.
Hình chữ nhật PQRS có \(PQ = \frac{1}{2} + 1 + \frac{1}{2} = 2,\,\,QK = \frac{{\sqrt 3 }}{2} \Rightarrow QR = \sqrt 3 \)
Quay hình chữ nhật PQRS quanh d ta được \({V_1} = \pi {\left( {\frac{{PQ}}{2}} \right)^2}QR = \pi {.1^2}.\sqrt 3 = \sqrt 3 \pi \)
Khi quay tam giác MEF quanh d ta được \({V_2} = \frac{1}{3}\pi .{\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi }}{{24}}\)
Tương tự khi quay tam giác NGH quanh d ta được khối tròn xoay có thể tích \({V_2}\)
Xét tam giác vuông API có: \(PI = \frac{{\sqrt 3 }}{2}\)
Khi quay tam giác API quanh d ta được \({V_3} = \frac{1}{3}\pi .A{P^2}.PI = \frac{1}{3}\pi {\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi }}{{24}}\)
Vậy khi xoay hình đã cho quanh d ta được vật tròn xoay có thể tích:
\(V = {V_1} + 2{V_2} + 4.\frac{{{V_3}}}{1} = \frac{{7\sqrt 3 \pi }}{6}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!