Câu hỏi:

22/02/2023 1,002

Tìm tham số m để phương trình \({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\) có nghiệm thực duy nhất.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Đưa các logarit về cùng cơ số.

Cách giải:

ĐK: \(\left\{ \begin{array}{l}x > 2\\mx > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 2\\m > 0\end{array} \right.\)

\({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\)

\( \Leftrightarrow {\log _{{{2018}^{\frac{1}{2}}}}}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\)

\( \Leftrightarrow 2{\log _{2018}}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\)

\( \Leftrightarrow {\log _{2018}}{\left( {x - 2} \right)^2} = {\log _{2018}}\left( {mx} \right)\)

\( \Leftrightarrow {\left( {x - 2} \right)^2} = mx\)

\( \Leftrightarrow {x^2} - \left( {m + 4} \right)x + 4 = 0\,\,\,\left( * \right)\)

Để phương trình ban đầu có nghiệm duy nhất \( \Leftrightarrow pt\left( * \right)\) có nghiệm kép lớn hơn 2 hoặc \(\left( * \right)\) có 2 nghiệm phân biệt \({x_1} < 2 < {x_2}\)

TH1: \(\left( * \right)\) có nghiệm kép lớn hơn 2 \( \Leftrightarrow \Delta = {\left( {m + 4} \right)^2} - 16 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = - 8\end{array} \right.\left( {ktm} \right)\)

TH2: \(\left( * \right)\) có 2 nghiệm phân biệt \({x_1} < 2 < {x_2} \Leftrightarrow {x_1} - 2 < 0 < {x_2} - 2\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\4 - 2\left( {m + 4} \right) + 4 < 0\end{array} \right. \Leftrightarrow m > 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:

Xem đáp án » 22/02/2023 10,186

Câu 2:

Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .

Xem đáp án » 21/02/2023 8,914

Câu 3:

Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:

Xem đáp án » 21/02/2023 7,566

Câu 4:

Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.

Xem đáp án » 21/02/2023 6,928

Câu 5:

Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là

Xem đáp án » 21/02/2023 4,116

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.

Xem đáp án » 21/02/2023 2,205

Câu 7:

Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)

Xem đáp án » 21/02/2023 1,839

Bình luận


Bình luận