Câu hỏi:

22/02/2023 704

Trong không gian với hệ tọa độ Oxyz, mặt phẳng chứa hai điểm \(A\left( {1;0;1} \right),\,\,B\left( { - 1;2;2} \right)\) và song song với trục Ox có phương trình là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

\(\left( P \right)\) đi qua A và nhận \(\overrightarrow n = \left[ {\overrightarrow {AB} ;\overrightarrow i } \right]\) là 1 VTPT.

Cách giải:

Ta có \(\overrightarrow {AB} = \left( { - 2;2;1} \right);\,\,\overrightarrow i = \left( {1;0;0} \right) \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow i } \right] = \left( {0;1; - 2} \right)\)

\( \Rightarrow \left( P \right)\) đi qua A và nhận \(\overrightarrow n = \left( {0;1; - 2} \right)\) là 1 VTPT

\( \Rightarrow \) pt \(\left( P \right):0\left( {x - 1} \right) + 1\left( {y - 0} \right) - 2\left( {z - 1} \right) = 0 \Leftrightarrow y - 2z + 2 = 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)

Cách giải:

\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)

Câu 2

Lời giải

Đáp án A

Phương pháp:

+) Tìm TXĐ của hàm số.

+) Tính đạo hàm của hàm số.

+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng

Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng

\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP