Câu hỏi:
22/02/2023 287Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {a;0;0} \right),\,\,B\left( {0;b;0} \right),\,\,C\left( {0;0;c} \right)\) với a,b,c là các số thực dương thay đổi tùy ý sao cho \({a^2} + {b^2} + {c^2} = 3\). Khoảng cách từ đến mặt O phẳng \(\left( {ABC} \right)\)lớn nhất bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+) Viết phương trình mặt phẳng \(\left( {ABC} \right)\) dạng đoạn chắn.
+) Tính khoảng cách từ O đến mặt phẳng \(\left( {ABC} \right)\).
+) Sử dụng BĐT Buniacopxki tìm GTLN của biểu thức \(d\left( {O;\left( {ABC} \right)} \right)\) .
Cách giải:
Phương trình mặt phẳng \(\left( {ABC} \right):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
\( \Rightarrow d\left( {O;\left( {ABC} \right)} \right) = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }}\) lớn nhất \( \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) nhỏ nhất.
Áp dụng BĐT Buniacopxki ta có: \(\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right)\left( {{a^2} + {b^2} + {c^2}} \right) \ge {3^2} = 9\)
\( \Leftrightarrow 3.\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right) \ge 9 \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge 3\)
\( \Rightarrow d\left( {O;\left( {ABC} \right)} \right) \le \frac{1}{{\sqrt 3 }}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tiệm cận ngang của đồ thị hàm số \(y = 1 + \frac{{2x + 1}}{{x + 2}}\) có phương trình là:
Câu 2:
Tìm tập xác định D của hàm số \(y = \frac{{\tan x - 1}}{{\sin x}} + \cos \left( {x + \frac{\pi }{3}} \right)\) .
Câu 3:
Tìm tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {m + 2} \right)x + 2018\) không có cực trị.
Câu 4:
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Câu 5:
Trong không gian với hệ tọa độ Oxyz , mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 4 = 0\) có bán kính R là
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Câu 7:
Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
về câu hỏi!