Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Sử dụng công thức biến đổi tích thành tổng \(\cos \,x\cos \,y = \frac{1}{2}\left[ {\cos \left( {x + y} \right) + \cos \left( {x - y} \right)} \right]\)
Cách giải:
\(\cos \,5x.\cos \,x = \cos \,4x\)
\( \Leftrightarrow \frac{1}{2}\left( {\cos \,6x + \cos \,4x} \right) = \cos \,4x\)
\( \Leftrightarrow \cos \,6x + \cos \,4x = 2\cos \,4x\)
\( \Leftrightarrow \cos \,6x = \cos \,4x\)
\( \Leftrightarrow \left[ \begin{array}{l}6x = 4x + k2\pi \\6x = - 4x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{k\pi }}{5}\end{array} \right. \Leftrightarrow x = \frac{{k\pi }}{5}\left( {k \in Z} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCN \(y = \frac{a}{c}\)
Cách giải:
\(y = 1 + \frac{{2x + 1}}{{x + 2}} = \frac{{3x + 3}}{{x + 2}}\) có TCN \(y = 3\)
Lời giải
Đáp án A
Phương pháp:
+) Tìm TXĐ của hàm số.
+) Tính đạo hàm của hàm số.
+) Giải bất phương trình \(y' > 0\) và suy ra các khoảng đồng biến của hàm số.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right) \Rightarrow \) D đúng
Ta có: \(y' = \ln x + x.\frac{1}{x} = \ln x + 1 \Rightarrow \) C đúng
\(y' > 0 \Leftrightarrow \ln x > - 1 \Leftrightarrow x > {e^{ - 1}} = \frac{1}{e} \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {\frac{1}{e}; + \infty } \right) \Rightarrow \) B đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.