Nghiệm của phương trình \({2^x} = 3\) là:
Nghiệm của phương trình \({2^x} = 3\) là:
D. \(x = \frac{3}{2}\)
Quảng cáo
Trả lời:
Đáp án C
Phương pháp: \({a^b} = c \Leftrightarrow b = {\log _a}c\)
Cách giải:
Phương trình \({2^x} = 3 \Leftrightarrow x = {\log _2}3\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.
B.
D. \({x_{CT}} = 1\)
Lời giải
Đáp án B
Phương pháp:
Giải phương trình \(y' = 0\), lập bảng xét dấu, điểm \(x = {x_0}\) là điểm cực trị của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = \frac{{\ln x}}{x} \Rightarrow y' = \frac{{\frac{1}{x}.x - \ln x.1}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}} = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e\)
Bảng xét dấu y’:
|
x |
0 |
e |
\( + \infty \) |
|
y’ |
+ |
0 - |
|
Hàm số đạt cực đại tại \(x = e\) hay
Câu 2
D. \(D = \left( { - \infty ;3} \right)\)
Lời giải
Đáp án D
Phương pháp:
Hàm số \(y = {\log _a}f\left( x \right)\) xác định \( \Leftrightarrow f\left( x \right) > 0\)
Cách giải:
ĐKXĐ: \(3 - x > 0 \Leftrightarrow x < 3\). Vậy TXĐ của hàm số là \(D = \left( { - \infty ;3} \right)\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. Hàm số có hai điểm cực tiểu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(y = \frac{{x + 2}}{{x + 1}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(y' = {e^{ - x}} - \frac{1}{x}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.