Câu hỏi:

25/02/2023 36,418

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.

Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.

Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn C

Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).

Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:

\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).

Từ (1) và (2) ta có: \(bc > 0\).

Vậy ta có \(bc > 0,ad < 0\).

Lời giải

Lời giải

Chọn A

\(y = \frac{{x + 4}}{{2x - m}}\)

Điều kiện: \(m \ne 2x \Leftrightarrow x \ne \frac{m}{2}\).

\(y = \frac{{x + 4}}{{2x - m}} \Rightarrow y' = \frac{{ - m - 8}}{{{{\left( {2x - m} \right)}^2}}}\)

Hàm số nghịch biến trên \(\left( { - 3;4} \right)\)

\( \Leftrightarrow y' < 0,\forall x \in \left( { - 3;4} \right)\)

\( \Leftrightarrow \left\{ \begin{array}{l} - m - 8 < 0\\\frac{m}{2} \notin \left( { - 3;4} \right) \Leftrightarrow m \in \left( { - 6;8} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 8\\\left[ \begin{array}{l}m \ge 8\\m \le - 6\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \ge 8\\ - 8 < m \le - 6\end{array} \right.\).

\(m\) nguyên âm nên \(m \in \left\{ { - 6; - 7} \right\}\).

Vậy có 2 giá trị nguyên âm \(m\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP