Câu hỏi:

25/02/2023 973 Lưu

Cho nửa đường tròn (O) có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng có bờ là AB ). Qua một điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By theo thứ tự ở C và D. Gọi N=ADBC,H=MNAB.Chọn câu đúng nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo tính chất hai tiếp tuyến cắt nhau ta có: AC = CM BD = DM

AC // BD (vì cùng vuông góc vớiAB )

Theo hệ quả của định lý Ta – lét ta có:

CNBN = ACBDCNBN = CMDM

Theo định lý Ta – Lét đảo ta đượcMN // BD.

Mà BD ABMNAB

Theo hệ quả của định lý Ta – Lét ta có:

NHBD=AHAB = CNCB = MNBDMN = NH

nên B sai.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

tan2x - sin2x = sin2xcos2x - sin2x = sin2x . 1cos2x - 1 = sin2x . sin2xcos2x = tan2x . sin2x

Lời giải

Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. (ảnh 1)

a) Do tam giác ABC cân tại A, suy ra AB = AC.

Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

Ta lại có AM + AN = 2AB (gt), nên suy ra

2AB – BM + CN = 2AB – BM + CN = 0 BM = CN.

Vậy BM = CN (đpcm).

b) Gọi I là giao điểm của MN và BC.

Qua M kẻ đường thẳng song song với AC cắt BC tại E.

Do ME // NC nên ta có:

MEB^=ACB^ (hai góc đồng vị) nên ∆BME cân tại M BM = ME mà BM = CN nên ME = CN.

CNI^ = IME^ (hai góc so le trong)

MEI^ = NCI^ (hai góc so le trong)

Ta chứng minh được  ΔMEI = ΔNCI  (g . c . g)

Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

c) Xét hai tam giác MIK và NIK có:

MI = IN (cmt),

MIK^ = NIK^ = 900

IK là cạnh chung. Do đó BAK^ = CAK^

Suy ra KM = KN (hai cạnh tương ứng).

Xét hai tam giác ABK và ACK có: AB = AC(gt),BAK^ = CAK^ (do BK là tia phân giác của BAC^), AK là cạnh chung, do đó ΔABK = ΔACK(c . g . c) 

Suy ra KB = KC (hai cạnh tương ứng).

Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC, do đó

ΔBKM = ΔCKN(c . c . c) suy ra MBK^ = KCN^. Mà MBK^ = ACK^ACK^ = KCN^ = 1800 : 2 = 900KCAN. (đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP