Câu hỏi:

25/02/2023 188

Hoa có 48 viên bi đỏ, 30 viên bi xanh và 60 viên bi vàng. Hoa muốn chia đều số bi vào các túi, sao cho mỗi túi có đủ 3 loại bi. Hỏi Hoa có thể chia vào nhiều nhất bao nhiêu túi mà mỗi túi có số bi mỗi màu bằng nhau.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: 
Gọi số túi mà Hoa chia được là x  (túi) 
Vì số bi mỗi màu ở mỗi túi cũng bằng nhau nên 48  x; 30 x và 60  x
xƯC(48; 30; 60)

Vì x  là lớn nhất nên x = ƯCLN(48; 30; 60)
Ta có: 48 = 24 . 3; 30 = 2 . 3 . 560 = 22 . 3 . 5
x = ƯCLN(48; 30; 60) = 2 . 3 = 6 .
Vậy Hoa chia được nhiều nhất là 6 túi mà mỗi túi có số bi mỗi màu bằng nhau.

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh đẳng thức : tan2x - sin2x = tan2x . sin2x

Xem đáp án » 12/07/2024 24,729

Câu 2:

Cho ABC có trọng tâm G. Các điểm D, E, F lần lượt là trung điểm của BC, CA, AB và I là giao điểm của AD và EF. Hãy phân tích các vecto AI, AG, DE, DC theo hai vecto AE, AF.

Xem đáp án » 12/07/2024 10,450

Câu 3:

Cho ΔABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.

a) Chứng minh rằng: BM = CN

b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.

c) Đường trung trực của MN và tia phân giác của BAC^  cắt nhau tại K. Chứng minh rằng ΔBKM = ΔCKN từ đó suy ra KC vuông góc với AN

Xem đáp án » 12/07/2024 9,493

Câu 4:

Cho ABC cân tại A (A^<90). Vẽ BH  AC, CK AB.

a) Chứng minh rằng AH = AK.

b) Gọi I là giao điểm của BH và CK. Chứng minh BIC cân.

c) Chứng minh HI là tia phân giác của A

Xem đáp án » 12/07/2024 6,077

Câu 5:

Cho a, b, c là độ dài 3 cạnh của tam giác. CMR ab + c - a + ba + c - b + ca + b - c3

Xem đáp án » 12/07/2024 6,045

Câu 6:

Cho ab = cd. Chứng minh 2a - 3b2a + 3b = 2c - 3d2c + 3d

Xem đáp án » 12/07/2024 5,073

Câu 7:

Cho ABC vuông tại A; đường phân giác BE. Kẻ EH  BC (H BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE.

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.    

d) AE < EC.

Xem đáp án » 12/07/2024 4,787
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua