Câu hỏi:
25/02/2023 1,678Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Điều kiện
Gọi A, B lần lượt là các giao điểm của đường thẳng (1) với các trục Ox, Oy.
Khi đó ta có:
Gọi H là hình chiếu của O trên đường thẳng (1)
Khi đó ta có vuông tại O và có đường cao OH.
Áp dụng hệ thức lượng cho vuông tại O và có đường cao OH ta có:
Vậy thỏa mãn điều kiện bài toán.
Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

a) Do tam giác ABC cân tại A, suy ra AB = AC.
Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.
Ta lại có AM + AN = 2AB (gt), nên suy ra
2AB – BM + CN = 2AB ⇔ – BM + CN = 0 ⇔ BM = CN.
Vậy BM = CN (đpcm).
b) Gọi I là giao điểm của MN và BC.
Qua M kẻ đường thẳng song song với AC cắt BC tại E.
Do ME // NC nên ta có:
(hai góc đồng vị) nên ∆BME cân tại M ⇒ BM = ME mà BM = CN nên ME = CN.
(hai góc so le trong)
(hai góc so le trong)
Ta chứng minh được
Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.
c) Xét hai tam giác MIK và NIK có:
MI = IN (cmt),
IK là cạnh chung. Do đó
Suy ra KM = KN (hai cạnh tương ứng).
Xét hai tam giác ABK và ACK có: AB = AC(gt), (do BK là tia phân giác của ), AK là cạnh chung, do đó
Suy ra KB = KC (hai cạnh tương ứng).
Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC, do đó
suy ra . Mà (đpcm)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.