Câu hỏi:

12/07/2024 2,633

Cho hình vuông ABCD, M là trung điểm cạnh AB, P là giao điểm CM và DA

a) Cm: APBC là hình bình hành và BCDP là hình thang vuông

b) CM: 2Sbcdp = 3Sapbc          

c) Gọi N là trung điểm BC, Q là giao điểm DN và CM. Cm: AQ = AB

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD, M là trung điểm cạnh AB, P là giao điểm CM và DA (ảnh 1)

a) Ta có: M1^ = M2^ (2 góc đổi đỉnh)

ΔAMP = ΔBMC(g . c . g)MP = MC

Xét tứ giác APBC có AB và CP là 2 đường chéo nhau tại trung điểm mỗi đường nên APBC là hình bình hành.
Vì APBC là hình bình hành nên BC // APBC // DP mà BC CD

 BCDP là hình thang vuông (Điều phải chứng minh).
b) Nhận xét: SADC = SABC = SABP và đặt SADC = SABC = SABP = a

Khi đó:2SBCDP = 2 . 3a = 6a; 3SAPBC = 3 . 2a = 6a

Suy ra đpcm.

c) Vì M là trung điểm của AB nên BM = 12AB

Vì N là trung điểm của BC nên CN = 12BC mà AB = BCBM = CNΔCBM = ΔDCN(c . g . c)C1^ = D1^

ΔDCN vuông tại C nên

D1^ + N1^ = 90oC1^ + N1^ = 90oCQN^ = 90o

ΔPDQ vuông tại Q.
Xét ΔPDQ vuông tại Q, có QA là đường trung tuyến ứng với cạnh huyền QA = 12PD = AD AD = ABAQ = AB (Điều phải chứng minh). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

tan2x - sin2x = sin2xcos2x - sin2x = sin2x . 1cos2x - 1 = sin2x . sin2xcos2x = tan2x . sin2x

Lời giải

Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. (ảnh 1)

a) Do tam giác ABC cân tại A, suy ra AB = AC.

Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

Ta lại có AM + AN = 2AB (gt), nên suy ra

2AB – BM + CN = 2AB – BM + CN = 0 BM = CN.

Vậy BM = CN (đpcm).

b) Gọi I là giao điểm của MN và BC.

Qua M kẻ đường thẳng song song với AC cắt BC tại E.

Do ME // NC nên ta có:

MEB^=ACB^ (hai góc đồng vị) nên ∆BME cân tại M BM = ME mà BM = CN nên ME = CN.

CNI^ = IME^ (hai góc so le trong)

MEI^ = NCI^ (hai góc so le trong)

Ta chứng minh được  ΔMEI = ΔNCI  (g . c . g)

Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

c) Xét hai tam giác MIK và NIK có:

MI = IN (cmt),

MIK^ = NIK^ = 900

IK là cạnh chung. Do đó BAK^ = CAK^

Suy ra KM = KN (hai cạnh tương ứng).

Xét hai tam giác ABK và ACK có: AB = AC(gt),BAK^ = CAK^ (do BK là tia phân giác của BAC^), AK là cạnh chung, do đó ΔABK = ΔACK(c . g . c) 

Suy ra KB = KC (hai cạnh tương ứng).

Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC, do đó

ΔBKM = ΔCKN(c . c . c) suy ra MBK^ = KCN^. Mà MBK^ = ACK^ACK^ = KCN^ = 1800 : 2 = 900KCAN. (đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP