Câu hỏi:

12/07/2024 2,542

Cho hình vuông ABCD, M là trung điểm cạnh AB, P là giao điểm CM và DA

a) Cm: APBC là hình bình hành và BCDP là hình thang vuông

b) CM: 2Sbcdp = 3Sapbc          

c) Gọi N là trung điểm BC, Q là giao điểm DN và CM. Cm: AQ = AB

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD, M là trung điểm cạnh AB, P là giao điểm CM và DA (ảnh 1)

a) Ta có: M1^ = M2^ (2 góc đổi đỉnh)

ΔAMP = ΔBMC(g . c . g)MP = MC

Xét tứ giác APBC có AB và CP là 2 đường chéo nhau tại trung điểm mỗi đường nên APBC là hình bình hành.
Vì APBC là hình bình hành nên BC // APBC // DP mà BC CD

 BCDP là hình thang vuông (Điều phải chứng minh).
b) Nhận xét: SADC = SABC = SABP và đặt SADC = SABC = SABP = a

Khi đó:2SBCDP = 2 . 3a = 6a; 3SAPBC = 3 . 2a = 6a

Suy ra đpcm.

c) Vì M là trung điểm của AB nên BM = 12AB

Vì N là trung điểm của BC nên CN = 12BC mà AB = BCBM = CNΔCBM = ΔDCN(c . g . c)C1^ = D1^

ΔDCN vuông tại C nên

D1^ + N1^ = 90oC1^ + N1^ = 90oCQN^ = 90o

ΔPDQ vuông tại Q.
Xét ΔPDQ vuông tại Q, có QA là đường trung tuyến ứng với cạnh huyền QA = 12PD = AD AD = ABAQ = AB (Điều phải chứng minh). 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh đẳng thức : tan2x - sin2x = tan2x . sin2x

Xem đáp án » 12/07/2024 24,776

Câu 2:

Cho ABC có trọng tâm G. Các điểm D, E, F lần lượt là trung điểm của BC, CA, AB và I là giao điểm của AD và EF. Hãy phân tích các vecto AI, AG, DE, DC theo hai vecto AE, AF.

Xem đáp án » 12/07/2024 10,482

Câu 3:

Cho ΔABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.

a) Chứng minh rằng: BM = CN

b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.

c) Đường trung trực của MN và tia phân giác của BAC^  cắt nhau tại K. Chứng minh rằng ΔBKM = ΔCKN từ đó suy ra KC vuông góc với AN

Xem đáp án » 12/07/2024 9,719

Câu 4:

Cho ABC cân tại A (A^<90). Vẽ BH  AC, CK AB.

a) Chứng minh rằng AH = AK.

b) Gọi I là giao điểm của BH và CK. Chứng minh BIC cân.

c) Chứng minh HI là tia phân giác của A

Xem đáp án » 12/07/2024 6,247

Câu 5:

Cho a, b, c là độ dài 3 cạnh của tam giác. CMR ab + c - a + ba + c - b + ca + b - c3

Xem đáp án » 12/07/2024 6,137

Câu 6:

Cho ab = cd. Chứng minh 2a - 3b2a + 3b = 2c - 3d2c + 3d

Xem đáp án » 12/07/2024 5,148

Câu 7:

Cho ABC vuông tại A; đường phân giác BE. Kẻ EH  BC (H BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE.

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.    

d) AE < EC.

Xem đáp án » 12/07/2024 4,946
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua