Câu hỏi:
26/02/2023 269Cho có A(5; 3); B(2; -1) và C(-1; 5). Tính tọa độ chân đường cao vẽ từ A.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn B.
Gọi A’(x; y) là tọa độ chân đường cao vẽ từ A;
và
Ta có AA’ và BC vuông góc với nhau nên
Suy ra -3(x - 5) + 6(y - 3) = 0 hay x - 2y + 1 = 0 (1)
Và
cùng phương nên 2x + y – 3 = 0 (2)
Từ (1) và (2) suy ra x = y = 1
Vậy điểm A’ cần tìm có tọa độ (1; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 4:
Một học sinh muốn chọn 20 trong 30 câu trắc nghiệm. Học sinh đó đã chọn được 5 câu. Tìm số cách chọn các câu còn lại ?
Câu 5:
Cho ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là các điểm đối xứng của H qua các cạnh AB, AC.
a) Chứng minh A, E, D thẳng hàng và BCED là hình thang.
b) Chứng minh .
c) Cho biết AB = 3cm, AC = 4cm. Tính DE và diện tích DHE.
Câu 6:
Cho cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.
a) Chứng minh rằng: BM = CN
b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.
c) Đường trung trực của MN và tia phân giác của cắt nhau tại K. Chứng minh rằng từ đó suy ra KC vuông góc với AN
Câu 7:
Cho ABC vuông tại A; đường phân giác BE. Kẻ EH BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE.
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC.
d) AE < EC.
về câu hỏi!