Cho hình chóp S.ABCD có đáy là hình bình hành ABCD với O là giao điểm hai đường chéo AC và BD. Gọi M,N lần lượt là trung điểm các cạnh SA và SD. 1. Chứng minh MO song song với mặt phẳng (SBC) và mặt phẳng (OMN) song song với mặt phẳng (SBC). 2. Gọi K là trung điểm của MO. Chứng minh NK song song với (SBC). 3. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (OMN). Hỏi thiết diện là hình gì ?
Quảng cáo
Trả lời:

1) Ta có: MO là đường trung bình ΔSAC nên MO//SC mà SC⊂(SBC)
Vậy MO//(SBC)
Ta có:
MO//SC
NO//SB
MO, NO⊂(OMN); SC, SB⊂(SBC)
Vậy (OMN)//(SBC)
2) Ta có: (OMN)//(SBC)
Mà NK ⊂ (OMN)
Nên NK//(SBC)
3) Xét (OMN) và (ABCD):
Ta Có:
+) O là điểm chung 1
+) NM//AD (đường TB của tam giác)
Qua O vẽ đường thẳng song song với AD cắt AB tại T, cắt CD tại J
Vậy JT =(OMN) ∩ (ABCD) (1)
(OMN) ∩ (SAD)=MN (2)
(OMN) ∩ (SCD)=NJ (3)
(OMN) ∩ (SAB)=MT (4)
Từ 4 điều trên vậy thiết diện hình thang NMTJ (vì NM//TJ//AD).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
F là trung điểm AB ; E là trung điểm AC
Ta có EF song song BC (đường trung bình)
Mà D là trung điểm BC I là trung điểm EF AI là trung tuyến
Theo tính chất trọng tâm:
DE là đường trung bình tam giác ABC
hay
D là trung điểm BC
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
