Câu hỏi:

12/07/2024 1,355 Lưu

Cho ΔABC vuông tại A điểm M thuộc cạnh BC từ M vẽ các đường thẳng vuông góc với AB ở D vuông góc với AC ở E

a) cm AM = BE.

b) gọi l là điểm đx của D qua A và K là điểm đx của E qua M cm IK, DE, AM đồng quy hai trung điểm O của mỗi đoạn.

c) gọi AH là đường cao của ΔABC tính số đo DHE^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A điểm M thuộc cạnh BC từ M vẽ các đường thẳng vuông góc với AB ở D vuông góc với AC ở E (ảnh 1)

a) Xét tứ giác ADME có DAE^ = ADM^ = AEM^ = 90o

ADME là hình chữ nhật

AM= DE

b) Gọi O là giao điểm của AM và DE  OA = OM = OD = OE (2)

Do ADME là hình chữ nhật DA = ME

 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)

 DI = EK

Xét tứ giác DIEK có DI = EK (cmt)

     DI // EK (vì CEDM là HCN)

 DKEI là hình bình hành

Do O là trung điểm của DE  KI đi qua O

 DE cắt IK tại O và OD = OE;  OK = OI (1) 

Từ (1) và (2)  DE; AM; IK đồng quy tại trung điểm O của mỗi đường

c) Xét AHM vuông tại H có O là trung điểm của AM, khi đó HO là đường trung tuyến ứng với cạnh huyền AM. Suy ra HO = 12 . AM

Mặt khác, AM = DE.

HO = 12 . DE 

Xét DHO có đường trung tuyến HO = 12 . DE

 DHE vuông tại H DHE^ = 90o

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

tan2x - sin2x = sin2xcos2x - sin2x = sin2x . 1cos2x - 1 = sin2x . sin2xcos2x = tan2x . sin2x

Lời giải

Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. (ảnh 1)

a) Do tam giác ABC cân tại A, suy ra AB = AC.

Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN.

Ta lại có AM + AN = 2AB (gt), nên suy ra

2AB – BM + CN = 2AB – BM + CN = 0 BM = CN.

Vậy BM = CN (đpcm).

b) Gọi I là giao điểm của MN và BC.

Qua M kẻ đường thẳng song song với AC cắt BC tại E.

Do ME // NC nên ta có:

MEB^=ACB^ (hai góc đồng vị) nên ∆BME cân tại M BM = ME mà BM = CN nên ME = CN.

CNI^ = IME^ (hai góc so le trong)

MEI^ = NCI^ (hai góc so le trong)

Ta chứng minh được  ΔMEI = ΔNCI  (g . c . g)

Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN.

c) Xét hai tam giác MIK và NIK có:

MI = IN (cmt),

MIK^ = NIK^ = 900

IK là cạnh chung. Do đó BAK^ = CAK^

Suy ra KM = KN (hai cạnh tương ứng).

Xét hai tam giác ABK và ACK có: AB = AC(gt),BAK^ = CAK^ (do BK là tia phân giác của BAC^), AK là cạnh chung, do đó ΔABK = ΔACK(c . g . c) 

Suy ra KB = KC (hai cạnh tương ứng).

Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC, do đó

ΔBKM = ΔCKN(c . c . c) suy ra MBK^ = KCN^. Mà MBK^ = ACK^ACK^ = KCN^ = 1800 : 2 = 900KCAN. (đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP