Câu hỏi:

26/02/2023 263 Lưu

Cho hàm số y =f(x) xác định, liên tục có đạo hàm trên đoạn a;b (với a<b). Xét các khẳng định sau:

(I). Nếu f'x0,xa;b thì hàm số y =f(x) đồng biến trên khoảng (a;b).

(II). Giả sử fa>fc>fb,ca;b suy ra hàm số nghich biến trên (a;b).

(III). Giả sử phương trình f'x=0 có nghiệm x =m. Khi đó nếu hàm số f(x) đồng biến trên (m;b) thì hàm số f(x) nghịch biến trên (a;m).

(IV). Nếu hàm số y =f(x) đồng biến trên khoảng (a;b) thì f'x>0  ,xa;b

Số mệnh đề đúng trong các mệnh đề trên là:

A. 3

B. 1

C. 0

D. 2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C.

(I). Sai, vì: Thiếu điều kiện f'x=0  chỉ tại một số hữu hạn điểm.

(II). Sai.

(III). Sai, ví dụ: Xét hàm số y=fx=x33x2+x5.

Ta có f'x=x22x+1. Cho f'x=0x22x+1x=1.

Khi đó phương trình f'x=0 có nghiệm x0=1 nhưng đây là nghiệm kép nên không đổi dấu khi qua x0=1.

(III). Sai.

Sửa lại cho đúng nếu hàm số y =f(x) đồng biến trên khoảng (a;b) thì f'x0  ,xa;b

Vậy có 1 mệnh đề đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. a<0,b>0,c<0.

B. a>0,b>0,c>0.
C. a>0,b<0,c<0.
D. a>0,b<0,c>0.

Lời giải

Chọn C

Hình dáng đồ thị a>0: Loại đáp án A

Hàm số có 3 cực trị nên a.b<0 b<0: Loại đáp án B

Giao điểm của đồ thị với trục tung nằm dưới điểm O nên c<0: Loại đáp án D

Lời giải

Chọn C

Cho hình lăng trụ ABCDA'B'C'D' có đáy ABCD là hình thoi cạnh a tâm O và  góc ABC= 120 độ Góc giữa cạnh bên AA' và mặt đáy bằng (ảnh 1)


ABCD là hình thoi và ABC^=120°ΔABD đều.

Gọi I là trọng tâm của ΔABD.

A' cách đều A,B,D nên A'IABCDAA',ABCD=A'AI^=60°.

Ta có: AI=23AO=23.a32=a33.

A'I=AI.tanA'AI^=a33.tan60°=a.

Vậy V=A'I.SABCD=A'I.AB.BC.sinABC^=a.a.a.sin120°=a332

Câu 3

A. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y =1 và y =-1

B. Đồ thị hàm số đã cho không có hai tiệm cận ngang.
C. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.
D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x =1 và x =-1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP