Câu hỏi:

13/07/2024 5,999 Lưu

Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm O, đường kính BC lần lượt cắt AB, AC tại M và N; BN và CM giao nhau tại H, AH cắt BC tại K.

a) Chứng minh: AKBC.

b) Chứng minh: AM.AB = AN.AC

c) Chứng minh: MH là phân giác góc NMK.

d) MN và BC cắt nhau tại S. Chứng minh: SB.SC = SK. SO

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm O, đường kính BC lần lượt cắt AB (ảnh 1)

a) Ta có: BC là đường kính của (O) suy ra CMAB, BNAC.

BNCM=H suy ra H là trực tâm tam giác ABC

AKBC (đpcm)

b) Ta có: CMAB, BNAC

cosA^=AMAC=ANAB

AM.AB=AN.AC (đpcm)

c) Ta có:

AKBC, BNAC,CMAB.

Suy ra ta có những tứ giác sau là những tứ giác nội tiếp:

AMHN, MHKB, ANKB.

KMH^=KBH^=KBN^=KAN^=HAN^=HMN^

KMH^=HMN^

Suy ra MH là phân giác góc NMK.

d) Ta có:

SMB^+BMN^=180°

NCB^+BMN^=180°

Suy ra SMB^=NCB^

ΔSMB  ΔSCN(g.g)

SMSC=SBSN

SM.SN=SC.SB(1)

Theo câu c) NMK^=2CMN^=2NBC^=NOC^

Suy ra MNOK nội tiếp.

SKM^=MNO^

ΔSMK  ΔSON(g.g)

SMSO=SKSNSM.SN=SK.SO(2)

Từ (1) và (2) suy ra:

SB.SC= SK.SO

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D.

Trục Ox có vecto chỉ phương u=(1;0;0) và đi qua điểm O (0; 0; 0)

Mặt phẳng (Q) có vecto pháp tuyến nQ=(3;1;2)

Do mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q) nên mặt phẳng (P) có vecto pháp tuyến là n=u;nQ=0;2;1

 Phương trình mặt phẳng (P) có vecto pháp tuyến n và đi qua điểm O là:

2y + z =0

Lời giải

Ta xét các trường hợp:

TH1. Chữ số hàng nghìn là số 1. Ta có tổng số số nhỏ hơn 2811 là:

1. 9. 9. 9 = 729

TH2. Chữ số hàng nghìn là số 2.

Chữ số hàng trăm là số < 8 suy ra có 7 cách chọn.

Chữ số hàng chục và đơn vị có 9 cách chọn.

Tổng số: 1. 7. 9. 9 = 567

Vậy tổng số tự nhiên thỏa mãn yêu cầu bài toán là:

1290 số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP