Câu hỏi:

28/02/2023 195

Chứng minh với a, b, c ℝ ta có: (a + b + c)2. (ab + bc + ca)2 ≥ 3(ab + bc + ca)3 + +22222

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dúng bất đẳng thức Cô-si ta có:

a2 + b2 ≥ 2ab;

b2 + c2 ≥ 2bc;

c2 + a2 ≥ 2ca.

Cộng vế với vế ta có:

2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

a2 + b2 + c2 ≥ ab + bc + ca (*)

Mặt khác (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca.

Từ (*) suy ra: (a + b + c)2 ≥ 3 (ab + bc + ca)

(a + b + c)2. (ab + bc + ca)2 ≥ 3 (ab + bc + ca). (ab + bc + ca)2

(a + b + c)2. (ab + bc + ca)2 ≥ 3(ab + bc + ca)3 (đpcm).+ +22222

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D.

Trục Ox có vecto chỉ phương u=(1;0;0) và đi qua điểm O (0; 0; 0)

Mặt phẳng (Q) có vecto pháp tuyến nQ=(3;1;2)

Do mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q) nên mặt phẳng (P) có vecto pháp tuyến là n=u;nQ=0;2;1

 Phương trình mặt phẳng (P) có vecto pháp tuyến n và đi qua điểm O là:

2y + z =0

Lời giải

Ta xét các trường hợp:

TH1. Chữ số hàng nghìn là số 1. Ta có tổng số số nhỏ hơn 2811 là:

1. 9. 9. 9 = 729

TH2. Chữ số hàng nghìn là số 2.

Chữ số hàng trăm là số < 8 suy ra có 7 cách chọn.

Chữ số hàng chục và đơn vị có 9 cách chọn.

Tổng số: 1. 7. 9. 9 = 567

Vậy tổng số tự nhiên thỏa mãn yêu cầu bài toán là:

1290 số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP