Câu hỏi:
13/07/2024 854
Cho hình chữ nhật ABCD, O là giao điểm hai đường chéo; M ∈ CD và N ∈ AB sao cho DM = BN.
a) Chứng minh ANCM là hình bình hành, từ đó suy ra các điểm M, O, N thẳng hàng.
b) Qua M kẻ đuờng thẳng song song vói AC cắt AD ở E, qua N kẻ đường thẳng song song với AC cắt BC ở F. Chứng minh tứ giác ENFM là hình bình hành.
c) Tìm vị trí của điểm M, N để ANCM là hình thoi.
d) BD cắt NF tại I. Chứng minh I là trung điểm của NF
Cho hình chữ nhật ABCD, O là giao điểm hai đường chéo; M ∈ CD và N ∈ AB sao cho DM = BN.
a) Chứng minh ANCM là hình bình hành, từ đó suy ra các điểm M, O, N thẳng hàng.
b) Qua M kẻ đuờng thẳng song song vói AC cắt AD ở E, qua N kẻ đường thẳng song song với AC cắt BC ở F. Chứng minh tứ giác ENFM là hình bình hành.
c) Tìm vị trí của điểm M, N để ANCM là hình thoi.
d) BD cắt NF tại I. Chứng minh I là trung điểm của NF
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta chứng minh AN = CM; AN // CM suy ra AMCN là hình bình hành.
Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC.
Do ANCM là hình bình hành có AC và MN là hai đường chéo.
Do đó O là trung điểm của đoạn thẳng MN.
b) Ta có: EM // AC nên \[\widehat {EMD} = \widehat {ACD}\] (hai góc so le trong)
NF // AC nên \[\widehat {BNF} = \widehat {BAC}\] (hai góc so le trong)
Mà \[\widehat {ACD} = \widehat {BAC}\] (vì AB // DC, tính chất hình chữ nhật)
Do đó \[\widehat {EMD} = \widehat {BNF}\].
Từ đó chứng minh được ∆EDM = ∆FBN (g.c.g).
Suy ra EM = FN.
Lại có EM // FN (vì cùng song song với AC).
Do đó tứ giác ENFM là hình bình hành.
c) Tứ giác ANCM là hình thoi nên AC ⊥ MN tại O
Do đó M, N lần lượt là giao điểm của đường thẳng đi qua O và vuông góc với AC và cắt CD, AB.
Khi đó M và N lần lượt là trung điểm của CD và AB.
d) Ta chứng minh được DBOC cân tại O
Suy ra \[\widehat {OCB} = \widehat {OBC}\] và \[\widehat {NFB} = \widehat {OCF}\] (hai góc đồng vị)
Do đó DBFI cân tại I nên IB = IF (1)
Ta lại chứng minh được DNIB cân tại I nên IN = IB (2)
Từ (1) và (2) suy ra I là trung điểm của NF.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2
y' = 3x2 − 6(2m + 1)x + 12m + 5
Để hàm số y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞) thì:
y' = 3x2 − 6(2m + 1)x + 12m + 5 ≥ 0 (∀x > 2)
3x2 − 6x + 5 ≥ 12m(x − 1) (∀x > 2)
\( \Leftrightarrow \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \ge m\;\left( {\forall x > 2} \right)\)
Đặt \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \Rightarrow m \le \mathop {\min }\limits_{x > 2} g\left( x \right)\)
Ta có: \(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} > 0\;\left( {\forall x > 2} \right)\)
\( \Rightarrow g\left( x \right) > g\left( 2 \right)\;\left( {\forall x > 2} \right)\)
\( \Rightarrow m \le g\left( 2 \right) = \frac{5}{{12}}\).
Lời giải
Lời giải
A = x2 + xy + y2 − 3x − 3y
Þ 4A = 4x2 + 4xy + 4y2 − 12x − 12y
= (x2 + 4y2 + 9 + 4xy − 6x − 12y) + (3x2 − 6x + 3) − 12
= (x + 2y − 3)2 + 3(x − 1)2 − 12 ≥ −12
Þ A ≥ −3.
Vậy A đạt GTNN bằng −3 khi và chỉ khi
\(\left\{ \begin{array}{l}x + 2y - 3 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right. \Leftrightarrow x = y = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.