Câu hỏi:
11/07/2024 245Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Thay x = – 4 vào (P), ta được: \[y = \frac{{ - 1}}{4}.\,{\left( { - \,4} \right)^2} = \frac{{ - 1}}{4}\,\,.\,\,16 = - \,4\].
Thay x = 2 vào (P), ta được: \[y = \frac{{ - 1}}{4}.\,{2^2} = \frac{{ - 1}}{4}.\,4 = - 1\].
Do đó A(– 4;– 4) và B(2; –1).
Gọi (d): y = ax + b (a ≠ 0) là phương trình đường thẳng đi qua hai điểm A và B nên ta có:
\[\left\{ \begin{array}{l} - 4a + b = - 4\\2ab + b = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 6a = - 3\\2a + b = - 1\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = - 1 - 2a\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = - 1 - 2\,\,.\,\,12 = - 2\end{array} \right.\]
Vậy (d): \[y = \frac{1}{2}x - 2\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu 7:
về câu hỏi!