Câu hỏi:
13/07/2024 1,975Cho tam giác ABC vuông tại A. Về phía ngoài của tam giác vẽ các hình vuông ABDE, ACGH.
a) Chứng minh tứ giác BCHE là hình thang cân.
b) Vẽ đường cao AK của tam giác ABC. Chứng minh AK, DE, GH đồng quy.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Vì ABDE, ACGH là hình vuông nên D, A, G thẳng hàng.
Suy ra \[\widehat {DAB} + \widehat {BAC} + \widehat {CAG} = 45^\circ + 90^\circ + 45^\circ = 180^\circ \]
Do đó BE // CH (vì cùng vuông góc với DG)
Mà AE = AB, AH = AC
Suy ra ΔAEH = ΔABC (c.g.c)
⇒ \[\widehat {AHE} = \widehat {DCB}\] (hai góc tương ứng).
⇒ \[\widehat {AHC} = \widehat {BCH}\]
⇒ Tứ giác BCHE là hình thang cân.
b) Gọi DE ∩ HG = F nên EFHA là hình chữ nhật
⇒ \[\widehat {FAE} = \widehat {HEA}\]
Mà \[\widehat {AEH} = \widehat {ABC};\,\,\widehat {ABC} = \widehat {KAC}\] nên \[\widehat {FAE} = \widehat {KAC}\].
Do đó F, A, K thẳng hàng.
Vậy AK, DE, GH đồng quy.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu 6:
Câu 7:
Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB AC (B và C là hai tiếp điểm). Kẻ đường kính CD của đường tròn (O).
a) Chứng minh OA ⊥ BC.
b) Chứng minh: BD // OA.
c) Kẻ BH ⊥ CD. Gọi K là giao điểm của BH và AD. Chứng minh K là trung điểm của BH.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận