Câu hỏi:
13/07/2024 1,639Cho tam giác ABC vuông tại A. Về phía ngoài của tam giác vẽ các hình vuông ABDE, ACGH.
a) Chứng minh tứ giác BCHE là hình thang cân.
b) Vẽ đường cao AK của tam giác ABC. Chứng minh AK, DE, GH đồng quy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Vì ABDE, ACGH là hình vuông nên D, A, G thẳng hàng.
Suy ra \[\widehat {DAB} + \widehat {BAC} + \widehat {CAG} = 45^\circ + 90^\circ + 45^\circ = 180^\circ \]
Do đó BE // CH (vì cùng vuông góc với DG)
Mà AE = AB, AH = AC
Suy ra ΔAEH = ΔABC (c.g.c)
⇒ \[\widehat {AHE} = \widehat {DCB}\] (hai góc tương ứng).
⇒ \[\widehat {AHC} = \widehat {BCH}\]
⇒ Tứ giác BCHE là hình thang cân.
b) Gọi DE ∩ HG = F nên EFHA là hình chữ nhật
⇒ \[\widehat {FAE} = \widehat {HEA}\]
Mà \[\widehat {AEH} = \widehat {ABC};\,\,\widehat {ABC} = \widehat {KAC}\] nên \[\widehat {FAE} = \widehat {KAC}\].
Do đó F, A, K thẳng hàng.
Vậy AK, DE, GH đồng quy.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu 7:
về câu hỏi!